NO.: ART D980

~ GB)CSrORTION DESIGN SPECIFICATION

Energy Management Systems Division

S ——— S— DATE: 7/25/85
SUBJECT: ARTECS ADVANCED PRODUCTS Display Controller Interface
REFERENCES: See Section 2.0
PURPOSE:
ISSUED BY: D. McMullen

INTERNAL
APPROVED

ART20755-94548 D980-1

TABLE OF CONTENTS

Page
1.0 INTRODUCTION D980-6
2.0 APPLICABLE DOCUMENTS D980-7
3.0 ENVIRONMENT D980-8

3.1 Hardware D980-8
3.1.1 MPB Features D980-8
3.1.2 ISB Features D980-9
3.1.3 DCI/CRT Controller Features D980-9
3.2 Software ‘ D980-11
3.3 Terminology and Notation Conventions D980-11
3.3.1 Acronyms D980-11
3.3.2 Notation Conventions D980-11
4.0 SUBSYSTEM OVERVIEW D980-12
4.1 Problem Definition D980-14
4.1.1 Status Driven Data Input/Output D980-14
4.1.2 Video Characteristics Preservation D980-15
4.1.3 Screen Tabs Processing D980-15
4.1.4 Repeated Space String Suppression D980-16
4.1.5 Repeated Character String Compression D980-18
4.1.6 Reading Multiple Data Fields D980-19
4.1.6.1 Data Field Definitions Data Buffer
Chain D980-20
4.1.6.2 Multiple Field Read Request Return
Data D980-21
4.1.6.3 Video Display Characteristics Change
Command D980-21
4.1.7 Mode Change Character Usage Conventions D980-23
4.2 General Solution D980-25
4.2.1 CRT Status Request Processing D980-25
4.2.2 CRT Function Request Processing D980-26
4.2.3 CRT Read Request Processing D986727
@ﬁh 4.2.4 CRT Write Request Processing D980-29
0

ART20755-945458 D980-2

TABLE OF CONTEMNTS (Cont.

Page
4,2.5 Multiple Field Read Request Processing D980-31
4.2.6 Function Key Interrupt Processing D980-33
4.2.7 Lite Pen Interrupt Processing D980-34
4.3 Subsystem Structure D980-35
4.3.1 DCI Driver Initialization (CDSTART) D980-74
4.3.2 Main Control (CDRIVER) D980-76
4.3.3 DCI Interrupt Processing (CDINTER) D980-78
4.3.4 CRT Status Processing (CDSTATS) D980-81
4.3.5 CRT Function Processing (CDFNCTN) D980-82
4.3.6 CRT Data Read Processing (CDREAD) D980-84
4.3.6.1 CRT Data Read (READ_CRT) D980-85

4.3.6.2 Edit Character/Video Status (EDIT_CHR) D980-86
4,.3.6.3 Move Position Cursor Command to

Buffer (POS_SEQ) D980-86
4.3.6.4 Move Video Control Characters to
Buffer (INS_VIDE) D980-86
4.3.6.5 Move Character to Buffer (SAV_CHAR) D980-87
4.3.6.6 Initialize Data Storage Flags
(DBUF_INT) D980-88
4.3.7 CRT Write Request Processing (CDWRITE) D980-89
4.3.7.1 CRT Data Write (WRIT_CRT) D980-90
4.3.7.2 Get Character from Data Buffer
(GET_CHAR) D980-91
4.3.7.3 Initialize Data Access Flags
(FLGS_INT) D980-92
4.3.8 Multiple Field Read Processing (CDFIELD) D980-94
4.3.8.1 Multiple Field Read (FREAD_CRT) D980-95
4.3.8.2 Get Byte from Data Buffer (GET_CHAR) D980-96
4.3.9 Read/Write Request Preprocessing (PRE_PROC) D980-98
4.3.10 Read/Write Request Post-processing (POST_OPT) D980-99
4.3.11 GCet Video Display Characteristics (GET_VID) D980-100
4.3.12 Select Video Characteristics (SET_VID) D980-102
4.3.13 Get Cursor Position (GET_CUR) D980-103
4.3.14 Move Cursor Subroutine (MOVE_CUR) D980-103
4.3.15 Read Character (READCHAR) D980-104
0

ART20758-94545 D980-3

4.3.16
4.3.17
4.3.18
4.3.19
4.3.20

TABLE OF CONTENTS (Cont.)

Write Character (WRT_CHAR)

Wait until DCI Ready (DCI_OK)

Wait until CRT Ready (CRT_OK)
Output Function to CRT (CDFOUT)
Output Mode Change to CRT (CDVMODE)

4.4 Data Organization

4.4.1
4.4.2

4.4.3
4.4.4
4.4.5
4.4.6
4.4.7
4.4.8

DCI Driver Task Identifier (DCI_TASK)

DCI/CRT Configuration Information Table
(DCI_INFO)

Command Zero I/O Register Addresses

CRT Input I/O Register Address (DCI_INPT)
CRT CEN to Physical Address Conversion Table
Functional Features/Operatlonai Modes Table
Unit Up/Down Operational Status Table
Utilization of Chains of Data Buffers

4.5 Subsystem Checkpoint Requirements

4.6 Initialization Requirements

4.7 Subsystem Interface

4.7.1

4.7.2

4.7.3

4.7.4

4.7.5

ART2075S-9454S

CRT Status Request/Response Formats
4.7.1.1 CRT Status Request Format
4.7.1.2 CRT Status Request Response Format
CRT Function Request/Response Formats
4.7.2.1 CRT Function Request Format
4.7.2.2 CRT Function Response Format
CRT Read Request/Response Formats
4.7.3.1 CRT Read Request Format
4,7.3.2 CRT Read Response Format
CRT Write Request/Response Formats
4.7.4.1 CRT Write Request Format
4.7.4.2 CRT Write Response Format

Page

D980-105
D980-106
D980-106
D980-107
D980-108
D980-109
D980-109

D980-109
D980-111
D980-111
D980-112
D980-113
D980-114
D980-115
D980-117
D980-117
D980-118
D980-119
D980-119
D980-120
D980-121
D980-121
D980-122
D980-123
D980-123
D980-125
D980-126
D980-126
D980-128

CRT Multiple Field Read Request/Response Formats D980-129
4.7.5.1 CRT Multiple Field Read Request Format D980-129
4.7.5.2 CRT Multiple Field Read'Response Format D980-131

D980-4

TABLE OF CONTENTS (Cont.)

Page
APPENDIX A. DCI HARDWARE INTERFACE INFORMATION D980-132
APPENDIX B. 40-815 CRT CONTROLLER CONTROL CHARACTERS D980-148
0

ART20755-945458 D980-5

1.0 INTRODUCTION

This design specification describes the Driver for the Display
Controller Interface/40-815 CRT Controller. Many times, this
Driver will be called simply the CRT Driver.

This Driver allows the Man-Machine subsystem to control a 40-815
CRT Controller connected to a Display Controller Interface (DCI)
Card. Data input/output to a CRT unit on the 40-815 CRT Controller
is controlled by the Driver. Other functional features of the CRT
controller can also be controlled by the Driver.

The Driver processes status input, function output, and data
read/write type requests for a specified 40-815 CRT Controller
connected to the DCI card.

Unsocilited function key and lite pen interrupts are handled by the

Driver. These interrupts occur as the result of some operator

action at the keyboard associated with the 40-815 CRT Controller.
The Man-Machine subsystem is notified of these interrupts when they

occur so that it can respond to the operator request.

ART2075S-9454S D980-6

2.0 APPLICABLE DOCUMENTS

Control Data Network Architecture (CDNA) Executive External

Reference Specification

Device Interface (DI) General Design Specification

Display Controller Interface (DCI) Engineering Specification

40-815 CRT Controller Engineering Specification

Motorolla M68000 Reference Manual

ART2075S-9454S D980-7

3.0 ENVIRONMENT

3.1 HARDWARE

The following hardware is required to run the DCI1/40-815 CRT

Controller Driver software:

a. A Device Interface (DI) Unit with its Internal System Bus (ISB)
A Master Processor Board (MPB) Card

c. A System Main Memory Module (SMM) Card

d. A Display Controller Interface (DCI) Card
A 40-815 CRT Controller Unit

f. A CRT Monitor/Keyboard Unit

Cards b through d must of course be installed in the DI and Units e
and r must be connected up properly to the DCI Card.

@@h 3.1.1 MPB Features

The MPB is built around a Motorolla M68000 Microprocessor.
Interrupt processing by the M68000 is fairly timeconsuming because
16 32-bit Data/Address Registers values must be saved in addition
to the interrupted user's return address and status register

whenever an interrupt is processed.

While it is true that the M68000 automatically saves the
interrupted user's return address and status register values when
an interrupt occurs and that the M68000 allows all the interrupted
user's registers to be saved by the execution of a single
instruction, these operations are still time consuming because of
the number of memory accesses required. Ideally, the peripheral
equipment used in the DI should be buffered I/0 type devices
because interrupt processing is not one of the M68000°'s strong
points. The DCI/CRT Controller however isn't a buffered 1I/0 type

ﬁ@h device.

ART2075S-94548 D980-8

3.1.2

3.1.3

The M68000 Microprocessor utilizes a Memory Mapped I/0 scheme to
communicate with its peripheral equipment. This This means the
M68000 can read/write its peripheral equipment's internal working
registers in the same way that it reads/writes memory. This can
lead to problems because the M68000 can change such a device's
registers when that device doesn't expect them to be changed. A
write to a peripheral device's working registers is never
rejected. This means the Driver must always ensure that the DCI is
ready for a function command before it transfers a command to the
DCI card. The Driver must also utilize status input requests to
determine when and if command ocutput to the DCI have been
successfully processed.

ISB Features

The scheme devised by the Arden Hill's developemnt group to allow
the MPB to talk to its peripheral cards must be used to communicate
with the DCI. The details of this scheme are included in Appendix
A of this design specification.

DCI/CRT Controller Features

The DCI/CRT Controller devices aren't buffered devices. This means
the Driver must handle each eight-bit byte of data that is
input/output to the CRT Controller. There are 256 different,
distinct bytes (characters) that can be output to the 40-815 CRT
Controller. A subset ($80 - $AF) of this 256 character set is
treated by the CRT Controller as Function Control Characters. Most
of the remaining characters in the set are treated as displayable

data characters. Only displayable data characters can be read from
the CRT Controller.

The CRT Monitor associated with the controller has a fixed number
of fixed length lines (normally 48 lines of 72 character

positions). The 40-815 Controller utilizes an internal memory to

ART20758-945458 D980-9

keep track of the displayable data characters that have been
transferred to it. Displayable data characters can be transferred
to the CRT Controller by either the Driver utilizing the DCI or by

an operator using the keyboard associated with the CRT Controller.

Each CRT Monitor (Screen) position has associated with it video
display characteristics including color, inverse video mode, and
blink mode. The CRT Controller's internal memory keeps track of
the video display characteristics associated with each screen
position. The video display characteristics associated with a
screen position are the video display characteristics that were
selected the last time that a displayable data character was
transferred to that screen position. The currently selected video
display characteristics can be changed either by outputting the
appropriate function control characters to the CRT controller or by

depressing the appropriate keys on the keyboard.

To keep track of where data characters transferred to the CRT
controller will be displayed on the screen, a current position
marker, called a CURSOR, is used. When a data character is
transferred to the CRT, it is moved to the screen position
indicated by the CURSOR and the CURSOR is moved one position

ahead. Wrap-around occurs to the top of the screen when a
character is output to the last screen position. The CRT
Controller maintains X,Y coordinates to keep track of the CURSOR's
current position. The Y ordinate indicates the line on which the
CURSOR is currently located. The X ordinate indicates the column
position where the CURSOR is located in that line. The CURSOR can
be moved to a new position in a number of different ways. Function
commands can be output to the controller to change either the X or
Y ordinates. Control Control characters can be used to position
the CURSOR relative to its current position. When the keyboard is
enabled, the operator can position the CURSOR using the keyboard's
CURSOR positioning keys and devices.

All things considered, the DCI/CRT Controllers are fairly complex
devices to control. This has an adverse effect on the amount of

error vetry logic that can be included in the Driver.

ART20755-9454S D980-10

The details of the procedures needed to control the DCI//CRT
@WM Controller units are included in Appendix A.

3.2 SOFTWARE
a. CDNA Executive
b. System's TIMER Task
c. Configuration Control Management Entity

d. Application tasks designed to process function key and litepen

interrupts.
3.3 TERMINOLOGY AND NOTATION CONVENTIONS
3.3.1 Acronyms

CDNA -- Control Data Network Architecture
DI -~ Device Interface Unit

ICB -- Internal Control Bus (Part of ISB)
ISB -- Internal System Bus

ITB —- Internal Transfer Bus (Part of ISB)
MPB -~ Master Processor Board

SMM -

System Main Memory

3.3.2 Notation Conventions

Hexidecimal number are indicated by an “H" following the the
number. For example, 6000H and OBA4H are hexidecimal numbers.

ART2075S-9454s D980-11

4.0

SUBSYSTEM OVERVIEW

This Driver allows the Man-Machine subsystem to control a 40-815
CRT Controller connected to a Display Controller Interface (DCI)
Card. Data input/output to a CRT unit on the 40-815 CRT Controller
is controlled by the Driver. Other functional features of the CRT

controller can also be controlled by the Driver.

The Driver processes status input, function output, and data
read/write type requests for a specified 40-815 CRT Controller
connected to the DCI card.

Unsocilited function key and lite pen interrupts are handled by the
Driver. These interrupts occur as the result of some operator
action (the depressing of a function key) at the keyboard
associated with a 40-815 CRT Controller. The driver notifies the
Man-Machine subsystem of these function key interrupts by sending
it intertask messages whenever one occurs. Lite Pen interrupts
indicate that the operator wants his cursor moved to a new
position. The Driver processes Lite Pen interrupts by determining
the X,Y co-ordinates for the screen position touched with the lite
pen and then moves the cursor to that position.

The basic software components of the DCI Driver and its software

environment are shown on the next page.

ART2075S8-9454S D980-12

DCI DRIVER SOFTWARE COMPONENTS/ENVIRONMENT

! User !
!Application!
! Tasks !
[}
! H ! CDINTER !
------------ ! Executive ! e
! CDSTART ! H ! ! Interrupt !
e - - ! Handler !
! Driver ' L e
! Initializ- ! !
! ation ! H !
! CDRIVER !
H H
! Driver 8
! Main H H
! Control e e
! ememem————— H ! CDFIELD
! ! ! ! e -
H H ! H ! Field Read
H H ! H ! Request
@wa H —— ! L
' H 4 —
H ! ! !
! CDSTATS ! ! CDFNCTN ! ' CDREAD ! ! CDWRITE !
H L L e D L it !
! Status ! ! Function ! ! Data Read ! ! Data Write!
! Request ! ! Request ! ! Request ! ! Request !
------------ PRE_PROC - Pre-Read/Write Options.
! DCI Driver ! POST_OPT - Post Read/Write Options.
! Utility ! GET_CUR —- Get Cursor Position.
! Function ! MOVE_CUR - Position Cursor.
! Subroutines! GET_VID -- Get Video Characteristics.
—————————— SET_VID -- Select Video Characteristics.
READCHAR - Read Single Character.
The Utility WRT_CHAR - Write Single Character.
Subroutines DCI_OK --- Wait Until DCI Okay.
are used by CRT_OK --- Wait Until CRT Controller Okay.
the major CDFOUT --- Select CRT Functions.
modules. CDVMODE -- Select CRT Operational Modes.
ART2075S-9454S D980-13

4.1

4.1.1

PROBLEM DEFINITION

Status Driven Data Input/Output

In the hardware environment section, it was mentioned that the DCI
card is not a buffered type device and that processing interrupts
is not one of the 68000's strong points. These two factors as well
as the speed of the DCI/CRT controller lead to a decision not to

use interrupts to control data input/output operations.

Since the DCI is not a buffered type device, the 68000 must handle
each individual character to be input/output. The speed of the
DCI/CRT controller hardware is such that the 68000 can't keep it
busy in most cases. For most of the normal data characters, the
hardware can complete its processing in 4-6 microseconds. Since it
usually takes the software 30 - 60 microseconds to handle a
character, it is easy to see that the software can't keep up with
the hardware when handling normal data character.

There is a certain subset of the character set however that are
treated as control characters by the 40-815 CRT controller.
Whenever one of these control characters is output, the CRT
controller treats it as a command to perform some special hardware
function such as a CLEAR SCREEN operation. These special control
characters can take several milliseconds to process. These control
characters are not very frequently used however so they do not

really make a good argument for the use of interrupts.

Since it takes far longer to process an interrupt than it takes for
the hardware to normally finish an input/output operation, it would
slow up data input/output operations tremendously. Thus, all the
data input/output are driven on a status basis rather than on an
interrupt basis. These means of course that all DCI Driver

requests are processed serially.

ART2075S-9454S D980-14

4.1.2

4.1.3

Video Characteristics Preservation

If the requester wants the video display characteristics of the
data characters read from a CRT to be preserved, the Driver
compares the video display characterisics of each character input
with those of the previous character input. If there is a change
in video display characteristics between the two characters, the
appropriate *“video change™ control characters are stored between
the two characters in the read buffer.

Since the NUMBER OF BYTES parameter in a data read request
specifies the number of displayable data characters to be input,
the requester has to be able to accept more data than what was
asked for when this feature is selected.

Screen Tabs Processing

When a read requester specifies that it wants the video display
characteristics of the data to be preserved, this Driver also
perserves any TABS associated with the data.

The CRT controller's STATUS ONE byte contains a flag that specifies
if the screen position, from which the last character was read, was
either tabbed or protected. When this PROTECTED/TABBED bit is set
for an input character, the following scheme determines if this

character position is a tabbed position:

a. If preceeding character position also had the PROTECTED/TABBED
bit set, the current character's position is assumed to be
protected, not tabbed.

b. If current character is either a “START PROTECTED FIELD"
character or a "END PROTECTED FIELD" character, the current

character's position is assumed to be protected, not tabbed.

¢. For all other cases, the current character‘'s position is
assumed to be tabbed.

ART2075S-9454S D980-15

When a character is read from a tabbed position, a SET TAB
character is stored before the character in the data read buffer if
the PRESERVE VIDEO DISPLAY CHARACTERISTICS option has been

specified on the read request.

4.1.4 Repeated Space String Suppression

This feature is implemented in a following way:

a. A prosign character (CURSOR) is selected.

b. All concerned parties agree that when the Driver encounter
this prosign character in a stream of data being output to a
CRT, the Driver is to interprete this prosign character and
the following two bytes as being a POSITION CURSOR command.
The two bytes following the prosign character are to be
interpreted as being the X and Y ordinates for the new screen

position of the CURSOR.

The following diagram illustrates this feature:

H

! Data Character '

e —— ! ————— e~
H CURSOR H

SR T ! POSITION CURSOR

! X - Ordinate ' Conmmand embedded
e - ! in data stream.

! Y - Ordinate !

B g I e e
! Data Character '

This feature can be utilized for two different purposes:

a. First of all, it can be used to suppress strings of repeated,
non-inverse space characters from data being read. It is
understood that the entire screen needs to be cleared

immediately before this data is rewritten to the screen.

ART20755-94548 D980-16 0

Because of the fact that the system must maintain large
numbers of pre-formatted display skeletons which usually
contain a fair number of repeated, non-inverse space character
strings, this feature is utilized to cut down upon both amount
of mass storage needed to store these display skeletons and
the amount of I/0 channel time needed when these skeletons
have to moved.

b. This feature can also be used to allow dynamic data associated
with displays to be output to multiple fields on the CRT
screen in a random order without forcing the requester to

issue multiple requests.

Each pre-defined display has associated dynamic data
definition packets that define which data values are to be
displayed, how they are to be represented on the screen, and
where they are to be written on the screen. These dynamic
value definition packets aren't usually stored in the display
definition record in the same order that their associated
values are found on the screen. Many of these dynamic data
values also have associated attributes that are represented by

special character strings which are output relative to data

values themselves.

The Driver allows a data read requester to specify if it wants
repeated space character strings to be suppressed using this
scheme. On CRT Write requests, the Driver scans the output data
for the prosign character associated with this feature and performs

the appropriate CURSOR positioning operation whenever it encounters
one.

ART2075S-94548 DS80-17

i

cwm 4.1.5 Repeated Character String Compression

This feature is implemented in a following way:
a. A prosign character (REPEAT) is selected.

b. All concerned parties agree that when the Driver encounters
this prosign character in a stream of data being output to a
CRT Controller, the Driver is to interprete this prosign
character as a command to output the next character to the CRT
Controller the number of times specified by the second
character following the prosign character.

The following diagram illustrates this feature:

Data Character

REPEAT Expand Compressed
Character String
command embedded
command embedded

in Data Stream.

Repeat Character

Repeat Count

Data Character

B LB LB I® 1@ O L@ IW P e O e
YD B @ B @ @ TP e e @ @ e

The Driver allows a data read requester to specify if it wants its
data compressed using this scheme. On CRT Write requests, the
Driver scans the output data for the prosign character associated

with this feature and expands compressed strings whenever they are
encountered.

ART20758-9454S D980-18

4.1.6 Reading Multiple Data Fields

Most system displays contain enterable data fields that allow the
operator to enter new data values into the system data base. When
a display is called to a CRT, the current values of the data items
associated with the enterable fields are displayed and in most
cages these values are updated periodically as long the display
remains up on the screen. The enterable data fields on a display
and the data items associaéed with these enterable fields have to
be identified by the static background portion of the display.

To enter new values into the data base for the data items
associated with the enterable fields, the operator enters one or
more new values in the enterable fields on the screen and presses
the ENTER function key.

When the Man-Machine subsystem processes such a request, it must
first determine which of the enterable fields associated with the
display contain new operator entered values that it needs to
process. There are a number of schemes that can be used to

identify operator entered values:

a. Sometimes color is used to identify operator entries. When
entering a value in an enterable field, the operator uses a
different color than the Man-Machine subsystem uses when it
outputs the current value of the data item associated with the
enterable field. Many systems in the past have reserved white
as the color to be used for data entry operations.

b. Sometimes the Man-Machine subsystem keeps track of the last
value that it displayed in an enterable field and compares it
to the current value in the field. If they don't matech, it is
assumed that the operator has enter a new value here. This
scheme result in inadvertant data entries if the operator
alters a field by mistake.

ART2075S-9454S D980-19

4.1.6.1

Regardless of the scheme actually used, the Man-Machine has to read
all -the enterable fields associated with the display to determine
which fields contain new data values entered by the operator. The
regular CRT Read request could be used for this function. Each
enterable field could read individually and the data would not be
very hard to process, but this would be very inefficient because
there is a certain amount of overhead involved with every request
processed. On the other hand, the entire screen could read and the
enterable fields could be extracted from the data read, but this

would be a very difficult procedure to implement.

To get around these problems, the Multiple Field Read request was
designed so that all the enterable fields associated with a display
could be read with a single request and that the data read would be

formatted in such a fashion as to make it easy to process.

Data Field Definitions Data Buffer Chain

The requesting task provides a chain of data buffers that contain
Data Field Definition Packets that define the data fields to be
read. For each field, the task has to identify the starting screen
position for the field and the length of the field. This

information is packed into three byte packets that are formatted as
follows:

+ 00 ! X H X,Y are the screen
! H co-ordinates for the
+ 01 ! Y ' start of the field.
' !
! FIELD LENGTH !

The Data Field Definitions data buffer chain contains one or more
Data Field Definition packets. The Data buffer control fields will

indicate how many Data Field Definition packets are contained in
the chain of Data buffers.

ART20758-9454S D980-20

4.1.6.2

4.1.6.3

Multiple Field Read Request Return Data

The data read from each of the fields defined by the requesting
task is formatted as follows and stored in chain of Data buffers:

which indicates start
of new field or the end
of the data buffer chain.

+ 00 ! CURSOR H POSITION CURSOR prosign.
! !
+ 00 ! X H X,Y are the screen
' ! co-ordinates for the
+01 ! Y H start of the field.
]]
! H '
' ! Data Field Character
! DATA ¢ String end is indicated
! FIELD ! in the return data
! CHARACTER ! by encountering either
' STRING ! another CURSOR byte
' (]
! !
! !

It should be noted that this data format allows the Man-Machine
subsystem to write the data read back out to the CRT.

Video Display Characteristics Change Command

There is still one more feature associated with the Multiple Field
Read request return data that must be explained. As was mentioned
earlier, the Man-Machine subsystem is interested in the video
display characteristics (color, blink, and inverse) of the
characters read from the enterable data fields.

The appropriate Video Display Mode Change control characters could
be inserted in the Field Data Character String to indicate the
video display characteristics of the actual data character in the
same way as the normal CRT Read request. But this scheme would
produce a data stream that would be complicated for the Han—uachihe

subsystem to process.

ART2075S-9454S D980-21 °

Instead, CHANGE VIDEO MODE command sequences are embedded in the

Data Field Character String in front of the first data character

and in front of any other data character whose video display

characteristics differ from those of the preceding data character.

The CHANGE VIDEO MODE command is implemented in the following

manner:

a. A prosign character (VIDEO) is selected.

b. All concerned parties agree that when the Driver encounter

this prosign character in a stream of data being output to a

CRT, the Driver is to interprete this prosign character the
following character as being a CHANGE VIDEO MODE command. The

character following the VIDEO prosign character is really a

set of Video Display Characteristic flags. The flags are

described below.

The following diagram illustrates this feature:

Data Character

VIDEO

VIDEO_MODE_FLAGS

—— o — — - - - —

CHANGE VIDE MODE
command embedded
in data stream.

Data Character

B @ Y® B '@ '@ @ @ O
SO B B @ @ '@ e e e

Where: VIDEO_MODE_FLAGS

Bits 7-6 —- Not Used
Bits 5-3 —-- Color

7
6

O #= N W &> WU

Code:

White

Cyan

Magenta

Blue

Yellow

Green

Red

Black (Illegal)

ART2075S-9454S D980-22

Bit 2 —- Inverse Video Mode

Bit 1 —- Not Used
Bit 0 —- Blink Mode
4.1.7 Mode Change Character Usage Conventions

The 40-815 CRT Controller has several operation modes which are

enabled/disabled by outputting the appropriate control characters

to the controllers.
These operational modes are:

0 Protected mode

o Scroll Up mode

0 Scroll Down mode

0 Insert Character in Field/Line mode

o Insert Character in Field/Page mode

The 40-815 CRT Controller doesn't however provide a status function
that can be used to determine if the controller currently has these
operational modes selected. This means that a record must be
maintained to indicate if the controller is supposed to have any of
these operational modes selected. This record can be accessed when
the operational modes for the controller are required. Since these
operational modes get cleared during the processing of data
read/write requests, a OPERATIONAL MODES record is needed to
restore the controller to the proper state after the processing of
these requests. This record also allows this information to be

provided when a CRT Status request is processed.

This OPERATIONAL MODES record must be kept up-to-date. Since these
optional modes are selected/cleared by outputting control
characters to the CRT Controller, one way to ensure that this table
is up-to-date would be to scan all data being output to the CRT
-.Controller and check for the six Mode Change control characters and
then adjust the OPERATIONAL MODES record whenever such a control

character is encountered. This would involve a lot of overhead.

0
ART2075S-94548 D980-23

To avoid this overhead, it was decided that the Driver would be the
only one allowed to output these control characters. By
convention, these control characters are not to be embedded in user
output data. But a user can request the Driver to output these
control characters by using a CRT Function Output request. This

means that the Driver simply keeps track of the Mode Change
characters that it outputs.

ART2075S-9454s D980-24

4.2 GENERAL SOLUTIONS

4.2.1 CRT Status Request Processing

The DCI Driver allows an applications task to input the status of a
specified CRT unit with a simple status input request.

This request allows the applications task to input the following
information about a CRT unit:

a. CRT Unit Ready status.

b. CRT Unit Busy status.

c. Cursor Position.

d. Character located at current cursor position and its

associated video characteristics: color, blink, and inverse

video status.

e. Current video characteristics selected for CRT.

f. Keyboard Enabled status.

8- Lite Pen Enabled status.

ART2075S-9454S D980-25

4.2.2 CRT Function Request Processing

The DCI Driver allows an applications task to output control

functions to a specified CRT with a simple CRT Function request.

This request allows the application task to perform the following
functions:

a. Enable Keyboard/Function Keys.
b. Disable Keyboard/Function Keys.
¢. Enable Lite Pen.
d. Disable Lite Pen.

e. Master Clear CRT.

f. Set CRT's alarm relay.
8- Clear CRT's alarm relay.
h. Position CRT cursor.

i. Initiate a copy operation to the CRT's slave print device if
it has one.

j. Select/De-select the following operational modes for the CRT
controller:

1. Protected Mode.
Scroll-Up Mode.
3. Scroll-Down Mode.
Insert Character in Field/Page Hode:

Insert Character in Field/Line Mode.

ART2075S-9454S D980-26

4.2.3 CRT Read Request Processing

The DCI Driver allows an applications task to read data from a

specified CRT with a simple read request.

The requester can specify the following parameters for a data read
operation from a CRT screen:

a. CRT unit identifier.

b. Either address of a chain of data buffers provided by the
requester for the data or an ALLOCATE DATA BUFFERS indicator.

c. Number of characters to be read.

d. Beginning screen position of data to be read:

1. Current cursor position.

2. Home position on screen.
3. Specified Cursor Position.
4, Beginning of Current Line.

e. Data Compression Desired indicators:

1. Repeated spaces suppression.
2. Repeated characters compression.

f. A Data Characters/Data Characters Plus Video Control

Characters indicator.

g A Pre-Read Protect Mode Alteration indicator.

h. Perform read operation without changing unit's protect mode.

i. Perform read operation with unit's PROTECT mode disabled and

then restore unit's PROTECT mode to pre-read operation state.

ART2075S8-9454S D980-27

J. A Post Read Cursor Position Option indicator:

1. Leave cursor after last character read.
2. Move cursor to HOME position on screen.

3. Return cursor to pre-read position.
k. A Post Read Keyboard Status Option indicator:

1. Enable keyboard.
2, Disable keyboard.

3. Return keyboard to pre-tread state.
1. A Post Read Lite Pen Status Option indicator:

1. Enable Lite Pen.
2. Disable Lite Pen.

3. Return Lite Pen to pre-read state.

After the Driver attempts to process a read request, it returns a
request processing completion code to the requesting task
indicating whether or not it was able to process the request
successfully.

Device failures are reported to Configuration Control.

ART2075S-9454S . D980-28

4.2.4 CRT Write Request Processing

The DCI Driver allows an application task to write data to a
L)
specified CRT with a simple data write request.

The requester can specify the following parameters for a CRT Write
operation:

ART2075S-94548

CRT Identifier.

Address of chain of data buffers.

Number of bytes to output.

Pre-Write Clear Screen/Home Cursor flag.
Beginning screen position for data to be written:
1. Current cursor position.

2. Home position on screen.

3. Specified Cursor Position.

A Pre-Write Protect Mode Alteration indicator.

Perform write operation without changing unit's PROTECT mode.

Perform write operation with unit‘s PROTECT mode disabled and
then restore unit's PROTECT mode to pre-write state.

A Post Write Cursor Position Option indicator:
Leave Cursor after last character written.

Move cursor to HOME position on screen.

Return cursor to pre-write position.

D980-29

j. A Post Write Keyboard Status Option indicator:

1. Enable keyboard.
2. Disable keyboard.

3. Return keyboard to pre-write state.

k. A Post Write Lite Pen Status Option indicator:

1. Enable Lite Pen.
2. Disable Lite Pen.

3. Return Lite Pen to pre-write state.

1. A Release Data Buffers flag.
After the Driver attempts to process a write request, it returns a
request processing completion code to the requesting task

indicating whether or not it was able to process the request
successfully.

Device failures are reported to Configuration Control.

ART2075S-9454S D980-30

4.

2.5

Multiple Field Read Request Processing

The DCI Driver allows an applications task to read multiple data
fields from a specified CRT with a simple read request. The
Multiple Data Field Read request is designed mainly for the data
entry function. It allows all the enterable fields on the CRT to
be read with a single read request. The data read is packed up in

a format that is easy for the Man-Machine subsystem to process.

The requester can specify the following parameters for a Multiple

Field Read operation from a CRT screen:

a. CRT unit identifier.

b. Either address of a chain of data buffers provided by the
requester for the data or an ALLOCATE DATA BUFFERS indicator.

c. Field Definitions for the data fields to be read. A Data
Field Definition consists of the X and Y co-ordinates for the

field's beginning screen position and the length of the field.
d. A Post Read Cursor Position Option indicator:
1. Leave cursor after last character read.
2. Move cursor to HOME position on screen.
3. Return cursor to pre-read position.
e. A Post Read Keyboard Status Option indicator:
1. Enable keyboard.
2. Disable keyboard.
3. Return keyboard to pre-read state.
f. A Post Read Lite Pen Status Option indicator:
1 Enable Lite Pen.

2. Disable Lite Pen.
e I Return Lite Pen to Pre-Read State.

ART2075S5-94548 D980-31

@W“ After the Driver attempts to process a read request, it returns a
request processing completion code to the requesting task
indicating whether or not it was able to process the request
successfully. Device failures are reported to Configuration

Control.

ART2075S-94548 D980-32

4.2.6 Function Key Interrupt Processing

The Driver preprocess function key interrupts from a CRT unit,
formats a FUNCTION KEY INTERRUPT message and sends this message to

an application task designed to process function key interrupts.

The preprocessing of a function key interrupt consists of the
following actions:

a. Saving the information necessary to restore CPU control back

to the interrupted user later.

b. Determining identity of the CRT Controller from which the

function key interrupt was received.

c. Determining number of the function key depressed.

d. Disabling interrupting CRT Controller's keyboard/interrupts.

The FUNCTION KEY INTERRUPT message is formatted as shown here:

' !
+ 00 ! REQUEST TYPE CODE () ot
' - '
+02 ! CRT LOGICAL UNIT NUMBER '
' -1
+ 04 ! FUNCTION KEY NUMBER. !
[] [}

NOTE: The Driver assumes the task identifier, for the application
task designed to handle the CRT function key interrupts, is
located in an external cell that can be referenced by the
name "“DDTASK3".

ART20758-9454S D980-33

4.2.7

Lite Pen Interrupt Processing

The Lite Pen is a hardware device that can be attached to the
keyboard unit associated with a CRT Controller. The Lite Pen is
used by the operator to position the CRT screen‘'s cursor. Wwhen the
Lite Pen is enabled, the operator can cause a Lite Pen interrupt by
touching the tip of the Lite Pen to the position on the screen to
which he wants the cursor moved.

The CRT Driver process Lite Pen interrupts from a CRT controller by
simply determining where the requester wants the cursor to be
positioned and moving the cursor to that position. It should be
noted that the CRT Controller hardware is designed in such a
fashion that the first CURSOR POSITION INPUT operation performed
after a lite pen interrupt will provide the X,Y coordinates for the
point on the screen touched by the Lite Pen rather the cursor's

current co-ordinates.

The operator can also cause an interrupt by grounding the Lite Pen
unit, but this interrupt is equated by the hardware to a selected
function key interrupt. This selected function key is normally
either the DISPLAY or the EXECUTE key. This interrupt is processed

as a function key interrupt.

ART2075S-94548 D980-34

4.3 SUBSYSTEM STRUCTURE

DESIGN STRUCTURE CHARTS —- PAGE ONE

LA "
! START TASK "
" 1
' 8]
!
v
H CDSTART !
H !
! PERFORM DCI e
! DRIVER TASK H !
H H —=! INITIALIZATION ! !
H ! H - - v
! v H H ! H 02A
! 01B v ! H H
! 01cC ! 5 6 !
1! v ! !
! 01D ! e
H ' !
v v v
KRXKKKKKIKKKKK - -
x DCITASK * ' 1" H !
* * " ALLOCATE L] ! DCI CARD H
* DCI DRIVER TASK * 9! INTERRUPT 0! H !
* IDENTIFIER * 'Y VECTOR e e !
Rk KKK KKK kK - ———
01B o1c 01D
2! ! 3 4 !
v v v
KKK F KKK K KKK KRAKKKKKKK KKK
1 ' * DCI_INFO * * *
! CONFIGURATION !°! * x * %
' CONTROL ' * DCI/CRT CONFIG- * * TI/0 REGISTER x
' ' X URATION INFO * * ADDRESSES *
KRRHKKKKKKK KK AKKKARKKKAXKK
1. Task ID. 2. DCI_INFO Addr. 3. DCI Config. Info.
4. I/0 Reg Addr. 5. Vector #, vector Subroutine Addr.
6. Vector #

ART20758-9454S D980-35

6”“ DESIGN STRUCTURE CHARTS —- PAGE TWO

02A
!

v

CDRIVER

INITIATE USER !———-———

! e ! USER REQUEST ! '
H ! -t PROCESSING H H
! ! ! v
H v ! H ' H 10A STAT_REQ
1! 02B v ! ! 4 11A FUNC_REQ
! 02¢C ! H v 12A READ_REQ
H v H 03A 20A WRIT_REQ
H 02D H 26A FREAD_REQ
v v
0! LR !! CONFIGURATION !!
LR GET INTER- !! 1 3] CONTROL 13
! TASK MESSAGE !! ' ADDRESS L
' ' 1! CONVERSION 1]
02B 02C 02D
! 2 31 ! 4
v v v
Fek KA K KKK ek Kk K -— A KK KKK KKK
* x ' ' x *
* * ! DCI CARD ' * -%
* DCI 1I/0 REG x H H x DCI REQUEST *
x ADDRESSES * H H x PARAMETERS *
Pk ek K Kk ek RAK KKK KK KK KKK
02E 02F 026G
' 2 ' 5 5
v v v
ARKKK KKK KKKKK RRKK KKK KKK KKK KRKAKK KK KK KKK
* * * UNT_STAT * * STAT_FLG *
x * x N S *
* 1/0 BEGISTER * % CRT UNIT STATUS * % CRT UNIT *
x ADDRESSES x x TABLE x X STATUS FLAGS *
AAKI KKK KKK KKK ke K ek K I e e KKK A KKK KKK KK KKK

1. Msg Receive Buf Addr. 2. I/0 Reg Addr. 3. Function Commands
4. DCI Req Parameters 5. CRT Status flags.

ART2075S-9454S D980-36

DESIGN STRUCTURE CHARTS —- PAGE THREE

03A
!
!
v
! BAD_PARM !
' !
! SEND ERROR !——-——mme o
' ! COMPLETION ! '
! ! MESSAGE ! !
' '
' ' '
212 1 3¢
' 2! !
! ' !
' ! '
v v v
e e 3k Fe e e e e e e K K ok PR KK KK KKK K K KK - -
* * * * ' '
X LI X 11 SEND INTER- !
* DCI REQUEST * X REQ COMPLETION * !! TASK MESSAGE !
* PARAMETERS % X MESSAGE * 1! !
Fe e R K e e K K K e ok Kk K P 2 5 e K K K K e K K K

- @ w »

1. Error Code.
2. Request Parameters.
3. Message Address.

ART20758-9454S D980-37

DESIGN STRUCTURE CHARTS —- PAGE FOUR

< e
>

INT_DCI1

- -

INITIATE DCI

- o ‘e @ e

[]
' ONE INTERRUPT !
' PROCESSING !
]
' !
1! !
! 2
! !
! !
v v
WA B K K K A K K KKK K A e e e K¢ e K e K ok KK
. * * * x
x X x *x
*x INT PROCESSING * * I/0 REGISTER *
* FLAGS * * ADDRESSES *
R e e A K K K ok K e Kk R IK KK KK AK KKK KX

1. DCI Index, Number of CRTs, Base CEN.
2. I/0 Register Address.

ART20758-9454S D980-38

g< - e
4

DESIGN STRUCTURE CHARTS —- PAGE FIVE

< &
>

INT_DCI2

INITIATE DCI
TWO INTERRUPT !——-emmmo—
'

- e ‘e e e

(=
N E o o e
»

1]
! PROCESSING
[}
1! !
' !
! 2
! !
' !
v v
Fe P 3 e e e K I K K K kK e A 3 K A KK K K K kK
x *x x X
*x *x X *
* INT PROCESSING * X I/0 REGISTER *
* FLAGS * * ADDRESSES *
AP e T e g e K K K ok Kk e Fe Fe A ok ok A K ok K kK

1. DCI Index, Number of CRTs, Base CEN.
2. I/0 Register Address.

ART2075S-9454S D980-39

DESTGN STRUCTURE CHARTS —- PAGE SIX

06A
1!
v
! COM_PROC !
! !
------------- ! DETERMINE !
- ! CAUSE OF DCI !———mme
! ! — INTERRUPT | !
! ! ! ! !
H v ! ! ! ! ! !
! 06B v 4 H ! v !
! 06C ' H H 08A ¢
! v ! 4 v H
1t'1 09A ! O7A !
! ! !
v v v
R R KKK KKK KK ARXKKKA KK KK KKK
x x H ! L] GHOST x
x x H 40-815 CRT H x -——%
* I/0 REGISTER * H CONTROLLER ! * GHOST INTERRUPT *
X ADDRESSES * ! ! x COUNTER x
Fode R KKK kK ok ko ek AXKRKKAK KK KK
06B 06C
2! 3°!3
v v
oA e e e Kk e ok o K
! ! X x
! DCI CARD ! * *
H ! * INT PROCESSING *
4 ¢ * FLAGS *
Fok e F Kk e A Kk K K ke e K

1. DCI_CMNDO Address. 2. Function Command. 3. Current CRT #
4. CRT STATUS ONE.

ART20758-9454S D980-40

DESIGN STRUCTURE CHARTS -~ PAGE SEVEN

07A
H
v
! FUNC_KEY '
H !
H HANDLE CRT H
! e H FUNCTION KEY f!—eeccmemee——e
H ! -t INTERRUPT ' H
! H ! H
H v H H H H '
H 07B v ! ! H 5
H 09A ! 3! i H
H v H v H
! 07¢ ! 07D 4
! ! H
v v v
Fek A 3k 5 Kk K K K ok kK e 3 3 A e ok e e K K
x X x INTR_MSG * 1 1)
x * X % ¢1 SEND INTER- !!
* I/0 REGISTER X * FUNCTION KEY X t! TASK MESSAGE !!
x ADDRESSES x X MESSAGE x ' L3
RAK KK KKK KKK KK oK KK K K K ek K
07B 07¢C 07D
1 ! 2 4
v v v
AKX KKK KKK KKKKXK
H H H ! x VID_STAT *
H DC1I CARD H H 40-815 CRT H x]
! ' ! CONTROLLER t* % UNIT VIDEO *
' ' ' ' * STATUS FLAGS %
AKKKKHKKKK KKK

1. CRT STATUS THREE input command. 2. CRT STATUS THREE
3. Function Key # 4. Keyboard Disabled flag. S5S. MSG Buf Addr.

ART20758-9454S D980-41 0

DESIGN STRUCTURE CHARTS —- PAGE EIGHT

< e
>

LITE_PEN

PROCESS LITE
PEN INTERRUPT
(FUTURE)

- @ W e
" v @ @ =

ART20758-94548 D980-42

S

DESIGN STRUCTURE CHARTS -- PAGE NINE

09A

Q = e D

DCI_RDY

WAIT FOR DCI
TO BE READY

- 19 ‘e @ e
- e e e ‘e

e B W 'O ‘e ‘e e ‘e

Q ve e @ e e

v
23k e e Kk e o e ok o ok K

x *x
*x *
* 1/0 REGISTER *

* ADDRESSES *
AR KKK KK KKk KK

DCI CARD

- e e '@
- @ e '@

1. DCI_CMND2 Register Addr. 2. DCI STATUS TWO.

ART2075S-94548S D980-43

DESIGN STRUCTURE CHARTS —- PAGE TEN

N oo

v

e T K e 3 ¢ e K ok Kk

*x
*x

x

*x
*

:

1/0 REGISTER *

ADDRESSES

*

KAEK KKK KKK KKK

10B
1
v

DCI CARD

10E
'

v

TR A A KK K KKK KKK

*
*x

%

x

x
x

ART2075S8-9454S

DCI REQUEST

5 <
-}

*

PARAMETERS *
KAAKKKKKKK KKK

x

10A

!
v

CDSTATS

INPUT CRT
CONTROLLER
STATUS

v
TR K K A KA KKK

* STAT_FLG

*
*x

x

> '@ '@ @

*x
*

CRT STATUS

FLAGS
RKKKKKARKKKKK

*

40-815 CRT
CONTROLLER

1. DCI Func Command
3. CRT Status Info.
5. Msg. Buf. Addr.

D980-44

W § e e 0 @ e

»

&
V]

O § e ‘e e i@
€ ™ 1@ e @ e e e e e e

=
2]

-

SEND INTER-
TASK MESSAGE

- 'w @ e
- - e w
- cw ‘@ @

. @ @

10D
3¢
v
e Je A e A K I K XK K ok Kk ok
X x
X X
* REQ COMPLETION *

* MESSAGE *
KRKKKKKKK KK KK

2. CRT Func Cmnd.
4. Cursor Position.

DESIGN STRUCTURE CHARTS -- PAGE EhEVEN

11A

Q o o it

CDFNCTIN

- ‘@

OUTPUT CRT P ——
FUNCTIONS

[T 3

O € & e
N

® <

>
o<
o

B W B @ O @ IS @ Ve ' '
W
>
Q *® e 1@ 16 e e e e e e e

v v
e e e A 3 3k K K e g K K K AP Fo K A K K KK kK
X X x %
x x x -
* DCI REQUEST * * REQ COMPLETION *

* PARAMETERS * * MESSAGE *
KAKKK KKK KK KKK KRKKKKK Kk KKK Kk _—_

SEND INTER-
TASK MESSAGE

e @ o e
- e e e
® @ ‘o @
- e @ ‘e

1. Mode Select flgs 2. Function Select flgs 3. Cursor Position
4. Completion Info. 5. Msg Buf Addr.

ART2075S-94548 D980-45

DESIGN STRUCTURE CHARTS —- PAGE TWELVE

e e ———— et ees e e

12A
H
v
! CDREAD !
H !
H PROCESS CRT e
! - ! READ REQUEST ! H
! ! - | !
v ! ! ! !
31A ! L ' ! !
v ! H ! H
13A ! v H !
v 12B v ¢
32A 12¢C !
3
!
!
!
12B 12C H
' 1 2! !
! H H
v v v
FeIe A KK AR K KKK K ARAKAKAKKARKK
x x X * X '
x] * -X ! SEND INTER- !
% READ PROCESSING * X COMPLETION x t! TASK MESSAGE !
x FLAGS * x MESSAGE x LR !
FeA KKK KK KK KKK KKK KKK KK KKK

1. Data Buf Addr., Req Type, CRT Identifier.
2. Req Type, CRT Identifier, Completion Info.
3. Message Buffer Address.

ART2075S-9454S D980-46

DESIGN STRUCTURE CHARTS -- PAGE THIRTEEN

13A
H
v
! READ_CRT !
| J— !
! INITIATE CRT H
' ~==-==-! READ REQUEST !——————- '
H ! -t PROCESSING - H !
! v ! ! ! '
! 13B H ! ! ! ! ! H ! v
¢ v 3! H ts ¢ 7:!'8 ! 9! 14A
! 13¢ !¢ H v 16 v ! !
1! v ! 33A ! 16A ! !
4 19 ! H ' !
H v v H H
H 13D 35A ! !
H ¢ ———
H H ¢
H H H
. eeemeeeeee 4
H 2 H
v v v
Rk T e 3k e ok K K FeA kA Kk Kk Kk ke k kK
@wk * x x x ' '
' * * * x ' DCI CARD H
* DCI REQUEST * * I/0 REGISTER * ! '
* PARAMETERS * * ADDRESSES * ' '
KA KKK KKK KK KKK Tk ek Kk Kk e Kk kK -
13B 13C 13D
' H !
v v v
- oAk KK KKK KKK AKKRKAKKKKKKK
13] 1 3] x x * *
?! ALLOCATE DATA !! X x * X
' BUFFER R * COMPLETION * X READ PROCESSING *
' LR x MESSAGE x % FLAGS X
ARKKKKKK KKK KK ARAKKKAKKKKXK

1. Data Buf Addr, Number of Bytes, Flags 2. First Data Buf Addr.
3. Data/Control Bytes 4., Processing Control Info.

5. Cursor Position 6. Data character 7. Character/Video Modes
8. Cha /Edited video Modes 9. Read Character Command

ART2075S-9454S D980-47

DESIGN STRUCTURE CHARTS —- PAGE FOURTEEN

14A
!

v

DATALOOP

!
!
! READ CRT SCREEN

.- '® ‘e e ‘e

! '
H 2!3 ~-~! STORE DATA READ !—- ! H
! v ' ! ! !
! 14B 4 ! ' H ! ! ! !
! v !5 H 7! ! H ! !
H 36A ! 5!6 ! 8! v ! '
' v ! v ' 184 ! v
! 14C ! 19A ! ! 15A
1!1 v v H
! 16A 19E v
! 17A
!
!
! 14B 14C
! H H
v v v
ARKKKK KKK K KKK ARAKKKKKK KA KK
% * x * '
X x x * H 40-815 CRT
* READ REQUEST * * DCI REQUEST * ! CONTROLLER
* FLAGS * * PARAMETERS * '
KRARKKKKKK KKK KAKKKKKK KKK KK _
1. Read Request Processing flags.
2. First Data Buffer Address.
3. Request flags, Data Buffer Address.
4. DCI Ready Status.
5. Character/Associated Video Display Characteristics.
6. Character/Editted Video Display Characteristics.
7. Data/Control Character. 8. Next Data Buffer Address.

ART2075S-94548 D980-48

@Wﬂ DESIGN STRUCTURE CHARTS -- PAGE FIFTEEN

15A
H
H
v
! END_PROC !
! !
! WRAPUP READ | Z S .
! ! REQUEST ! !
! ! PROCESSING H 4 !
! v
1! ! ! 35B
H 4 13
3 H 4
! ! 2
H ' '
v v v
KA KR Fe e K Kk ok Kk ok FRKK K KKK Kk KK ARKKKXKKKK KKK
* * x x * x
* * * x % —_— *
* READ COMPLETION * * DCI REQUEST * * DATA BUFFER *
* MESSAGE * * PARAMETERS * * CHAIN *
A KoK ek Kk Kk K K FoA KKK K T KK oK KK FeFe KA Kk KKK KKk KK

Request Completion flags.

Request flags (Request Parameters).
Data Access flags.

Backspace character.

S W

ART20758-9454S D980-49

™ DESIGN STRUCTURE CHARTS -- PAGE SIXTEEN

< &
.

EDIT_CHR

EDIT CURRENT e ——
CHARACTER'S !
VIDEO OPTIONS !

"o ‘e ‘e e ‘e

- '@ '@ 1@ e ‘e e
S '@ 1@ @ e e @

!
11 H 3
1!1
' .
v v v
KRKK KK KKK KKKK ARKAKKKKKAKKK KAKKKRKKK KKK
* CUR_STAT * * PREV_STAT * * x
x X * X ok *
* CURRENT VIDEO * * PREVIOUS VIDEO X * DCI REQUEST *
* DISPLAY OPTS * * DISPLAY OPTS * * PARAMETERS *
KK KKK KKK KKKk K KRRAKKKKKKKAKK KRKAKKAKK KKK
1. Character/Associate Video Display Characteristics
2. Character/Editted Video Display Characteristics
3. Request Processing Flags (Parameter List)
LY
(]

ART20758-9454S D980-50

@Wh DESIGN STRUCTURE CHARTS -~ PAGE SEVENTEEN

< 5
>

POS_SEQ

STORE CURSOR
POSITIONING
SEQUENCE

© <
o

- » e e
N

v
FeT e T K Fe AR K K KKk K

* *
x x
* FIELD START *

* CO-ORDINATES *
KRKKKKKKKK KKK

1. Prosign character, Cursor Co-ordinates.
2. Cursor Coordinates.

ART2075S8-9454S) D980-51

DESIGN STRUCTURE CHARTS —- PAGE EIGHTEEN

< &
>

INS_VIDE

INSERT VIDEO

DISPLAY OPTION H
H SELECT CHARS - 3!
! ! v
' H ! 19A
H ! H
11 1!'1 !t 2
! ! ! :
! L A r i
H ! H
v v v
R KK KRR KKK KKK ARKRKAKK KK KKK X ARAKKK KKK KKK K
* PRV_STAT * * SEL_OPTS % * %
x * x x X %
* PREVIOUS VIDEO * x NEW VIDEO * %X DCI REQUEST *
* DISPLAY OPTS * * DISPLAY OPTS % * PARAMETERS *
e e e 3k ek Kk Kk X KKK RKKK KKK KK KRAKAKKKF K KKK
1. Character/Associated Video Display Characteristics.
2. Request flags (Request Parameters).
3. Video Mode Select characters.

ART2075S-94548

D980-52

DESIGN STRUCTURE CHARTS —- PAGE NINETEEN

< o
-

SAV_CHAR

MOVE CHARACTER

- w ‘e '@

e — TO DATA BUFFER !—-c—ce—ee o
! ! H H '
6 ! ! !
! v ! ! 5
H 19C ! ' '
19B ! v !''5 !
! H 19D H 19E !
6 ! ' ' 5! !
v v v v v
FeRA K KK K KKK KK - -
* * 1 L H DBUF_INT
* *x 9t ALLOCATE DATA !! ! - -
* DATA STORAGE * 1 BUFFER 3 ! INITIALIZE DATA
* CONTROL FLAGS * 0! L ! STORAGE FLAGS
ARKKK KK KKKKK -
! !
6 ! 3!
19C 19D v v
3! ! 4 19B 19C
v v
KKK AKK K KKK KKK AKKKKKK KKK KKK
* x x %
*. * *x. *
* DATA BUFFER * * DCI REQUEST *
* x * PARAMETERS *
KKK K KKK KK KKK K KRARKKKA KKK %K
1. Data/Control character. 2. Completion code.
3. Data/Control Information. 4. Request flags.
5. Data Buffer Address. 6. Data Storage Control Info.
0

ART20758-9454S D980-53

DESIGN STRUCTURE CHARTS —- PAGE TWENTY

<=9
>

CDWRITE

PROCESS CRT

WRITE REQUEST

" @ 1® w w
- e e e e

N

& e
7]

= G e e

o
B e
>
N
>
[
»
w
" 'O o - I ‘e

Q *® 1@ 10 e e 16 16 e e e e

e e 3 K e e K e 3k ke Kk 96 30 ¢ 3 3¢ e e e o ke ok ok

&
Q @ @ 1@ e @ @ 18 @ e e e

* *x x *
x K x X
* DCI REQUEST * * REQ COMPLETION *

* PARAMETERS * * MESSAGE *
KKK KA KKK kK Fk KKK KK KR KKK

- e e e
- 1® e e

SEND INTER-
TASK MESSAGE

1. Request flags (Parameter List).
2. CLEAR MODES control character.

3. Request Type, CRT Identifier, Completion Code.

4. Message Buffer Address.

ART2075S-9454S D980-54

1 - e e e
- i@ e e

DESIGN STRUCTURE CHARTS -- PAGE TWENTY-ONE

21A
4
v
' WRIT_CRT '
! H
H OUTPUT DATA |
! TO CRT H H
H H -t | S !
! 1 ! ! '
' v 12 ' 1 4 ' t'5 !
! 25B ! ! v ! v !
! v ! 25A H 37a H
! 21B ! ! CRT_OK !
! H v '
! t 3 22A !
' 1 ! 22B '
! ! 23A H
! ! 23B 6 !
! ! 24A H
2 !
H ! H
v v v
oIk K Kk K KK K KK Rk e ok ek K K K K K
x * x BYTE_PRC * 1 3] 1 1]
* X x x !t RELEASE DATA !!
* DCI REQUEST * * BYTE PROCESSING * ¢! BUFFER CHAIN !!
* PARAMETERS * * SUBR ADDR TBL * ' '
oA F kA K KK KA K KK Fekek Kk KKK KKk kK -
21B
H
v 1. First Data Buffer Address.
adattatat ottt ot 2. CRT OUTPUT Register Address.
* x 3. Byte Processing Subroutine Address.
x *x 4. Data/Control Character.
% TI/0 REGISTER x 5. CRT Ready Status.
* ADDRESSES * 6. Data Buffer Chain Address.
Fedk R KK KK A KKK KK

ART2075S-9454S D980-55

DESIGN STRUCTURE CHARTS —- PAGE TWENTY-TWO

22A
2! 3
v

NORM_OUT

OUTPUT NORMAL
CHARACTER TO
40-815 CRT

- '@ 'w e =
e '@ @ ‘e @

2!
v

Q = e w e

w
~J
»

40-815 CRT
CONTROLLER

"o e @ @
- e e e

22B
2!3

WAIT_OUT

OUTPUT SPECIAL
CHARACTER TO
CRT AND WAIT

“» '@ @ o ‘e
- e ® @ w

2!3

W Q o

33B

1. CRT Ready Status. 2. Data/Control character.
3. Completion Indicator.

ART2075S-94548 D980-56

DESIGN STRUCTURE CHARTS —- PAGE TWENTY-THREE

23A

!
v

POSITION

- e

HANDLE CURSOR
POSITIONING
SEQUENCE

"o @

EXPAND

EXPAND/OUTPUT

N G o e e

25A 37A

1.
2.

4.
5.

COMPRESSED CHAR
SEQUENCE

4

- Q =

Q o e e

- ‘e e e

CARD

Cursor Co-ordinates.

Prosign character, Cursor Co-ordinates.
. Repeated character, repeat count.

CRT Ready Status.
Prosign Character, Repeated character.

ART2075S-9454S D980-57

- s @ =

DESIGN STRUCTURE CHARTS —-- PAGE TWENTY-FOUR

24A
'

v

VIDEO

SELECT NEW
VIDEO DISPLAY
OPTIONS FOR CRT

. @ @ @ @
- ' 'w® @ w

N € co e e
N

1. Video Display flags.
2. Video Mode Select Characters.
3. Completion Indicator.

ART20758-94548S D980-58

65-0860 SySY6-SSL0Z1aV

0
HRKNENRNKRENK
¥ NOILVWYO4NI «x
»* S$S300V vViva *
‘SS9appVv a93jind ejeq ‘v » %
-J9jovaey) 1033uU0)l/E3IBq ‘€ x %
‘U0T3IEUIOJUL TOAJUOD SSIVWIY BJEBd ¢ XRRNERRERRERKN
*3391 sa9joravyd 3JOo a3quNp ‘aajoeasy) ‘1 A A
[[}
i H
i i
i
i H
i i
i i
- £ 333233333313 i
i SOV1d SSaddV i L 3 viva 3 H
i V1va aZITVILINI » ILN3LNOo 1sandad «x H
i - - i % ¥ i
i IN1 s914 i x % i
-------------- P 33333333332 ¢ i¢
A A A i
i i i i
H : {74 € i i
H i i
iy H
i i i i
------------ i H3IOVAVHD
i 10dln0 IXaN 139 i
i i
i AVHD 139 i
A
T
i
vse

GAIJ-AINGML 30Vd —— SIYVHD J¥ALONELS NO9ISad \%9

DESIGN STRUCTURE CHARTS —- PAGE TWENTY-SIX

N
Q o - N
>

CDFIELD

PROCESS FIELD
READ REQUEST !—-e-—ee—emee

- ®» @ @

H -—! H !
v ! H
31a ' H ' ! !
v ! ! H !
27A v v H ¢
32A 26B H !
! !
2! 3
! H
26B H '
!
1! ' !
v v v
Jedekdedede e de ek Kk AIKKRKKKRKKKK
* * * * 0
* x N * ¢! SEND INTER-
* COMPLETION * * FIRST DATA * 11 TASK MESSAGE
* MESSAGE * * BUFFER * '
Fokdk kg kkkk kK KRRARRKFK KK KK

1. Request Type, CRT Identifier, Completion Code.
2. Number of Bytes of Data.
3. Completion Message Buffer Address.

ART2075S-9454S D980-60

DESIGN STRUCTURE CHARTS —- PAGE TWENTY-SEVEN

< 3
>

FREAD_CRT

INITIATE FIELD

- o ‘o e
- ® e e

' READ REQUEST '

! —— PROCESSING LR H

H ! - H v

H 4 ! ! 3! 28A

4 ! 2 t2 2 H

H v v ! v

¢ 27B 27¢ ! 30cC

H v '

2!'1 19E

H

!

! 27B 27¢C

H ! !

H 4 0 2 2!

v v v

Fe Tk IR Kk K e e kK K e A 5k K ok ek ok Kk
x x L] 1 3] L] x
x x ¢! ALLOCATE DATA !! * -%x
x DCI REQUEST * 1 BUFFER 1 * COMPLETION *
* PARAMETERS * 9 0] MESSAGE x
KkhK Kk KKK KKKK KAAK KK KKK KKKK

1. First Data Buffer Address, Field Definitions Data Buffer
Chain Address.

2. Data Buffer Address.

3. Field Definitions Data Buffer Chain Address.

4. Number of Data Buffers Wanted.

ART2075S-9454S D980-61

DESIGN STRUCTURE CHARTS —- PAGE TWENTY-EIGHT

< ®
>

RDF1

READ REQUESTED

. ! CRT FIELDS '
1 ' -t JOS— '
v 2! ! ! v
30A ! ! ' ' ! ! 29A
v 3 ' ! ' '
194 ! ' ! ' '
v H 5 v H
33B ' ' 36A 8!8
't 4 '
' ! '
' ' —_—
' '
' ' '
v v v
A e KK K K K KK Kk K AT R K KK K KKKk K
* * ! ¢ * *
x * ' DCI CARD ' % ——
* I/0 REGISTER * ' ! % READ PROCESSING *
* ADDRESSES % ! ' % FLAGS *
PP e A e K K K ok ke K kK R AR KK T K KK A KA KX

1. DATA DEFINITION FIELD character.

2. Data/Control Character.

3. Cursor Co-ordinates.

4. DCI COMMAND TWO Register Addr, CRT INPUT Register Addr.
5. Input Character and Associated Video Characteristics.

6. Character/Associated Video Display Characteristics.

7. DCI Ready Status.

8. Request Processing Control Information.

ART20758-9454S D980-62

DESIGN STRUCTURE CHARTS —- PAGE TWENTY-NINE

29A
'
v
' REQ_DONE !
' '
! WRAPUP FIELD !
! READ REQUEST !——- !
! PROCESSING ! ! 3
2! '
v v
19E 358

=t

e 09 'S 9 '® 'O 'S
N

" 'O 'O e o

v v
Fe P Fe K K Je Ao Kk KKk FER K KKK Fe KKK e KK
*x X x X
Koo = *x x *x
*x COMPLETION * % DCI REQUEST *
* MESSAGE * %X PARAMETERS X
o Je ¢ K o 3 3k K 3 Kk K e e A KK KK KK K kk

1. Completion Code.
2. Data Buffer Address.
3. Backspace character.

ART2075S-9454S D980-63

DESIGN STRUCTURE CHARTS —- PAGE THIRTY

30A
'3
v
! NXT_BYTE !
' '
! GET WEXT FIELD !
! DEFINITION foeeomeme o
]] BYTE ' '
' - '
] ! 41
1t1] !
! ' 2 !
308 ! ! 4 3oc !
! '] ' '
v v v v v
ke e K K e K e e K 3k ek RAK KKK KKKKXXX - ———
* x * * ! FLGS_INT
% x * x
* DATA FIELD DEF * * DATA FIELD * ¢ INITIALIZE
*x ACCESS FLAGS X * DEFINITIONS * ! ACCESS FLAGS
e e e e e A K de e K kK Tk P K K K Je ek Kk Kk

Data Field Definitions Access Flags.
Data PField Definitions.

Data character.

Next Data Buffer Address.

S W=

ART2075S-9454S D980-64

&«
]

- ® e e

Gmm DESIGN STRUCTURE CHARTS —- PAGE THIRTY-ONE

31A
'

v

PRE_PROC

PERFORM PRE- .

. ! REQUEST PROC !————- '
' ! —-! OPERATIONS ' ' 31
! 12 ¢ ' v
' v ! ' ! ! 6! 33B
! 374 3 ¢ 14 ' '
' ! ! ' ' v
111 ! 313 v tSs 358
! v ! 34A '
! 33a ! !
‘ ————
' ! '
' ! '
v v v
e K e e K e W K K K K K R A Fe KK A KKk Kk K AEAKKAKKKKRAKX
*x STAT_FLG * * ORGNL_XY * x *
X *x x. X x *
X CRT STATUS * % ORIGINAL CURSOR * * DCI REQUEST *
* FLAGS * *x POSITION * *x PARAMETERS *
PRI K 2 K I F ke T Kk K KK KK KKK KKKk PP T o R K T K K F K kK

1. Original CRT Status flags.

2. CRT Ready Status.

3. Cursor Co-ordinates.

4. Selected Video Display Modes.
5. Request Type, Request Flags.

6. Clear Screen control character.

ART2075S-9454S D980-65

DESIGN STRUCTURE CHARTS -- PAGE THIRTY-TWO

32A
'

v

POST_OPT

PERFORM POST

: L REQUEST PROC L i !
H H ! OPERATIONS $me ! 6!
' 12 - ! 5! v
] v ' ' ' ' ¢ 38A
' 328 ' ' ' ' !
! ! ' 4 ! v
! 3! ! 4 H ! 34B
1 ' ! ! !
' v ! 2
! 397 ! 33B !
! ! H
v v v
Fedede KKKk KKK KKK KRR KA KKK KK KKK KA KKKKKK KKK KK
* * % ORGNL XY * * *
x *x % - * * *x
x DCI REQUEST * * ORIGINAL CURSOR * * 68000 EXCEPTION *
* PARAMETERS X % POSITION % * yECTORS AREA *
KKK KKK KK KKKKK KKKAKKKK KKK KK kKA KKKk kK K
32B
H
v 1. Request flags.
KR KK KT KKK KKK K 2. CRT Unit Status flags.
* STAT_FLG * 3. Video Mode flags.
x * 4. Cursor Co-ordinates.
* CRT STATUS * 5. Video Mode Select code.
x FLAGS x 6. CRT Function Command code.
KKKKKAKARKKKK

ART2075S8-9454S D980-66

DESIGN STRUCTURE CHARTS -- PAGE THIRTY-THREE

33a
' 1
v

GET_CUR

GET CRT CURSOR

- '® o ‘e
" @ @ @

------------- POSITION ———————— e
! 2 - ! !
v ¢5 '
36A v ! ! H
37A ! 3 ! ! 1
! ! !
4 ! '
! H H
v v v
AR KKKK KKK KKK - —

* x H H ! !
* X ! DCI CARD ! H 40-815 CRT H
* T1/0 REGISTER * ! ! ! CONTROLLER H

* ADDRESSES * ! H H H

e e ek K ok e ek K
338
1!
v
! MOVE_CUR !
! !
! POSITION CURSOR !
! TO SPECIFIED |
'S ! SCREEN POSITION ! H
v —_— '
374 H 1!
! 6 !
v v
AR AR KKK KKK KK -
X : x]
x x ! 40-815 CRT
% I/0 REGISTER * H CONTROLLER
* ADDRESSES * H
Feok ek ok R e ok K e Kk K

1. Cursor Co-ordinates. 2. DCI Ready Status.

3. DCI_CMD2 Register Addr., CRT INPUT Register Addr.

4. INPUT CURSOR POSITION Command. S. CRT Ready Status.

6. CRT CONTROL FOUR Register Address.

ART2075S8-9454S

D980-67

1% e ‘e e

DESIGN STRUCTURE CHARTS - PAGE THIRTY-FOUR

34A
' 1l
v

GET_VID

GET SELECTED
VIDEO DISPLAY

e @ ‘o e

- '@ '@ @ '»

! 2 —— OPTIONS - !
v ! H H
33A ' 2 ! ! 4 '
v ! v !
338 3¢ 35A 1!
H '
v H
35B v
ARAKK KKK KKKKK
* VID_STAT *
X =%
* SELECTED VIDEO *
% DISPLAY OPTS *
HK AR KK KKK K AKX
34B
5!
v
SET_VID

SELECT VIDEO
DISPLAY MODE

"o ‘e ‘e ‘e ‘e
- e e o ‘e

6

N § =

358

1. Video Display Mode flags. 2. Cursor Position.

3. Space, Backspace characters.

4. Space character/Associatied Video Display Characteristics.
S. Video Mode Select code. 6. Video Mode Select characters.

ART2075S-94548 D980-68

DESIGN STRUCTURE CHARTS —- PAGE THIRTY-FIVE

FeF KK Aok Kk Kk ok ok ok
* *

*x

* 1I/0 REGISTER

* ADDRESSES
Kok kK ok ok

*
x
x

e ‘@ '@

> @ e '@

PR P e K R A KKk Aok kX

x *

x

* I/0 REGISTER

* ADDRESSES
kKKK KKK KKK KK

X
*
*

ART20758-9454S

"o @ e '@

354
' 1
v

READCHAR

READ A DATA
CHARACTER FROM
CRT CONTROLLER

! !5
! v
4 36A
H
v
DCI CARD
35B
7!
v
WRT_CHAR

WRITE CONTROL/
DATA CHAR TO
CRT CONTROLLER

Q = e e =

DCI CARD

D980-69

- e e e -

- '® @ @

40-815 CRT
CONTROLLER

- e e e
- e e ‘e

Character/
Associated

Video Display
Characteristics.
CRT Ready Status.
DCI_CMD2 Register
Addr, CRT INPUT
Register Addr.
Read Character
and Associated
Video Display
Characteristics
Command.

DCI Ready Status.
BACKSPACE control
character.
Character.

CRT DATA OUTPUT
Register Addr.

DESIGN STRUCTURE CHARTS —- PAGE THIRTY-SIX

e vk e ke ¢ ok K 3 ok ok ok

*
x

36A
' 1
v

DCI_OK

ENSURE THAT
DCI CARD
ISN'T BUSY

Q *® e o

L 4

*x

* DCI CARD

* 1/0 REGISTER *

x

3 7 K e 3K K oK Kok ke ok

S W=

ART2075S8-9454S

- e @ e

ADDRESSES *

DCI Ready Status.

DCI STATUS TWO Register Address.
INPUT DCI STATUS TWO Command.
DCI STATUS TWO.

DS80-70

- ‘e e @ e

- ‘e

€ '@ 1o e e e

DCI_BUSY

HANDLE DCI
CARD HANG--UP

@mm DESIGN STRUCTURE CHARTS —- PAGE THIRTY-SEVEN

CRT_OK

ENSURE THAT CRT

CONTROLLER
' 2 - ISN'T BUSY
v H
36A ! H
13 !
! H
---------- 415
! !
v v
FeA K KK KK KKk KKK
* x
x * DCI CARD

* 1/0 REGISTER *

* ADDRESSES %
AEKKKKKKKXKKK

" 1@ ‘e @

@Wﬁ 1. CRT Ready Status.
2. DCI Ready Status.
3. DCI COMMAND TWO Register Address, CRT
4, Input CRT Status One Command.
S. CRT STATUS ONE.

ART20758-9454S DS80-71

Q ® 1@ e = e e e

CRT_BUSY

Handle CRT
Hangup.

INPUT Register Address.

DESIGN STRUCTURE CHARTS —- PAGE THIRTY-EIGHT

38A
1!
v

CDFOUT

COMMANDS TO

'
?
! OUTPUT FUNCTION
'
'

CRT CONTROLLER

! !
! H !
! '3 H H
H v H H
H 37A ! !
2! 2 ' 4 5 9
! H !
H H !
v v v
KKK KKK KKK KKK KAKKKKKKKKKKK e
* STAT_FLG * * * '
* X * x H 40-815 CRT
x CRT STATUS * % I/0 REGISTER * H CONTROLLER
x FLAGS * X ADDRESSES * H
KRR AKAK K KKK KK KK KA A KA KKK KK

1. CRT Function Command code.

2. CRT Unit Status flags.

3. CRT Ready Status.

4, CRT CONTROL ONE and CRT CONTROL THREE Register Address.
5. CRT CONTROL ONE and CRT CONTROL THREE bytes.

ART20758-9454s D980-72

DESIGN STRUCTURE CHARTS —- PAGE THIRTY-NINE

39A
1!
v

CDVMODE

OUTPUT MODE
CHANGES TO
CRT CONTROLLER

i ' @ '@
- @ *w e ‘o

!
!
4 H
' 3¢
! !
2! 2 v
! 35B
!
v
KRR A K F K KA KKK
% STAT_FLG *
*x *
* CRT STATUS *
* FLAGS *x
KA KKK KKK KA KKK

1. Video Display Mode Select code.
2. CRT Unit Status flags.
3. Video Mode Select control characters.

ART2075S-94548 D980-73

4.3.1 DCI Driver Initialization (CDSTART)

This module runs once when the DCI/CRT driver task is created by
the Configuration Control Subsystem.

The driver initialization module performs the following functions:

a. It moves its Task Identifier from the RUNNING cell in the

Executive's Configuration Information table to the DCI_TASK
cell. .

The DCI_TASK cell is a globally defined location that can be
referenced by the other MPB resident application tasks that
want to communicate with the DCI Driver.

b. It uses the CC_DCI_INFO_MAC to get Configuration Control to
move the DCI/CRT Hardware Configuration Information to the
DCI_INFO table which the driver references for all the
hardware configuration information that it needs.

c. It calculates the address(es) for the DCI COMMAND ZERO Memory
Mapped 1I/0 register(s) associated with the DCI card(s)
configured in the MCU. These Memory Mapped I/0 register
address(es) are saved in the DCILCMDO and DCI2CMDO cells.

These register addresses are needed to enable and disable
interrupts from the DCI during normal request processing.
They are also needed by the DCI interrupt processing

subroutines.

c. It calculates the address(es) for the CRT DATA/STATUS INPUT
Memory Mapped 1/0 register(s) that are associated with the DCI
card(s) configured in the MCU. These Memory Mapped I/0
register address(es) are saved in the DCI1INPT and the
DCI2INPT cells.

ART2075S-94548 D980-74

ART2075S-94548

The address ot the CRT DATA/STATUS INPUT register associated
with a DCI card is required by any section of the driver that
needs to obtain data/information from a CRT controller
connected to that DCI card.

It takes control of the Exception vector(s) that are
associated with the ISB slot(s) occupied by the DCI card(s)
and supplies the Interrupt Processing subroutine to be used

for these vectors.

There is an Executive directive that is used to perform these
functions. Since the vectors table is located in MPB RAM and
the DCI Driver is an application task, the DCI Driver can not
change the vector table itself because it is running in USER
mode.

It tells each DCI card which Exception vector it is to use.

It enables interrupts from each DCI card.

It transfers control to Driver's Main Control Section.

D980-75

4.3.2

Main Control (CDRIVER)

The Main Control section interfaces with the Executive using a
RECEIVE NORMAL MESSAGE directive to get the next application
request to be processed. This user interface ensures that requests
are processed on a First In/First Out basis. The request parameter

list is received into an area that can be accessed by all the other
parts of the driver.

When a request is received, the DCI Driver first gets the CRT's
CYBER Equipment Number (CEN) from the request parameter message and
then uses the CC_CRT_STAT_MAC macro to find out from Configuration
Control if the specified CRT unit is available for use (UP). 1If
the CRT is marked DOWN, an error completion message is sent back to

the requesting task. Otherwise, request processing continues.

The next step that the DCI Driver performs is to disable interrupts
from all the DCI cards configured in the MCU. This is necessary
because we can't allow two users to communicate with a DCI card at
the same time because of the serial nature of the hardware. Many
logical interface operations with the DCI/CRT hardware involve a
series of physical operations that can't be interrupted. Thus,
request processing is never allowed to be interrupted. Function
Key interrupts aren't lost, but are simply held out until the

current request completes.

Then the DCI Driver uses the CC_CRT_INFO_MAC macro to get the
Configuration Control subsystem to convert the CRT CEN parameter to
the corresponding physical address and relative CRT number. The

physical address for a CRT consists of the following two components:

a. ISB slot number for the DCI card to which the CRT is connected.

b. CRT Controller Address (0-15).

ART2075S8-9454S D980-76

The relative CRT number identifies a CRT relative to the MCU to
which the CRT is connected. Since an MCU can be configured with
either one or two DCI cards and each DCI card can have up to 16
CRTs connected to it, this relative CRT number can range from zero
to thirty-one. The relative CRT number is used to access the

Driver's tables used to keep track of the CRT Unit Status
Information.

Once the physical address of CRT has been obtained, the addresses
for the Memory Mapped I/0 Registers required to communicate with
the DCI card and the CRT controller are calculated. The Memory
Mapped I/0 Registers for which addresses are calculated and the

cells where these address are saved are listed here:

o DCI COMMAND/STATUS ZERO register -- (DCI_ZERO).

o DCI COMMAND/STATUS ONE register -- (DCI_ONE).

o DCI COMMAND/STATUS TWO register —- (DCI_TWO).

o DCI COMMAND/STATUS THREE register —- (DCI_THREE).
o CRT DATA/STATUS INPUT register -- (CRT_IN).

o CRT DATA OUTPUT register —- (CRT_OUT).

o CRT CONTROL ONE OUTPUT register -- (CONTRL_1).

0 CRT CONTROL THREE OUTPUT register -- (CONTRL_3).
0 CRT CONTROL FOUR OUTPUT register —-- (CONTRL_4).

0 CRT CONTROL FIVE OUTPUT register —-- (CONTRL_S5).

The cells where these Memory Mapped I/0 Registers are saved can be

accessed globally by other driver sections.

A DCI COMMAND ONE skeleton is set up in the DCI_CMD2 cell to make
it easy to generate DCI COMMAND TWO bytes. DCI COMMAND TWO bytes
are to used to tell the DCI card to obtain status informationand

data from the CRT.

A copy of the CRT's Unit Flags is obtained from the UNT_STAT table
and saved in the STAT_FLG cell to make these flags easier to
access. After the processing of the request has been completed,
the local copy of the CRT's Unit Status flags is used to update the
TRI's entry in the UNT_STAT table.

ART2075S5-9454S D980-77

Next the request type code is validated to ensure that it is a
request type that this driver can handle. If the request code is
bad, a CHK Instruction failure is caused to occur. And then, the
driver subroutine designed to process this type of request is
called. No parameters are passed to the called subroutine because
the request parameters and any other required processing
information is stored in globally accessable areas. It is the
called subroutine's responsibility to process the request and send

a request processing completion message back to the requesting task.

After the called subroutine has completed its processing, it
returns control to this Main Control section. When control is
received back, DCI interrupts are re-enabled first and then
control is transferred to the beginning portion of this module to

get the next user request to be processed.

ART20758-9454S D980-78

4.3.3 DCI_Interrupt Processing (CDINTER)

The driver contains an interrupt processing subroutine for each DCI
card. If there are two DCI cards, the two DCI interrupt processing
subroutines share a majority of their code. A DCI Interrupt

Processing subroutine performs the following functions:
a. Disables interrupts from interrupting DCI card.

b. Inputs status from CRT Controllers connected to DCI to
determine which one caused the interrupt.

c. Determines cause of the CRT controller interrupt:

1. FUNCTION KEY.
2. LITE PEN.
3. END-OF-OPERATION condition.

d. Processes interrupt that occurred.

1. FUNCTION KEY interrupt -- The number of the FUNCTION KEY
depressed is determined by inputting the STATUS THREE
byte from the CRT controller first. WNext, the CRT
controller's keyboard and lite pen functions are disabled
by outputting the appropriate CONTROL ONE and CONTROL
THREE function bytes to the CRT controller. The CRT's
UNIT STATUS table entry is then updated to reflect the
fact that its keyboard and Lite Pen have been disabled.
And finally, a FUNCTION KEY message is sent to the
Function Key Interrupt Processing task to let it know
about the function key depressed. The format of this
message was described in this document earlier.

2. LITE PEN interrupt —- It is assumed here that the reader
has read the beginning portion of this document and knows
that the Lite Pen is a hardware device that can be used

@mx to move a CRT's cursor to any position on the CRT
' screen. This is accomplished by touching the desired

ART2075S-9454S .D980-79

screen position with the Lite Pen. When a LITE PEN
interrupt occurs, the CRT's STATUS FOUR and STATUS FIVE
bytes are input to determine the X,Y co-ordinates for the
screen position touched by the lite pen. The CRT cursor
is then moved to this position by outputting the
appropriate CONTROL FOUR and CONTROL FIVE bytes to the
CRT controller.

3. END-OF-OPERATION interrupt —- The driver never enables
the END-OF-OPERATION interrupt and this interrupt is
simply ignored if it should occur.

e. Restore interrupted CPU user's registers and exit the

interrupt processing state.

NOTE: Since no significant processing information is contained in
the DCI card status bytes, no time is wasted inputting and
saving this information.

ART2075S-9454S D980-80

G@h 4.3.4 CRT Status Processing (CDSTATS)

This section processes 40-815 CRT Status requests and returns the
CRT's status information to the requesting task in the request
completion message.

A CRT Status request is proceesed in the following fashion:

a. The specified CRT is statused to get its READY and NOT BUSY
status bits and this information is moved to the request

completion message.

b. The CRT's Unit Status flags are obtained from the Unit Status

Flags table and moved to the request completion message.

c. The character located at the CRT's current cursor postion is
read and the character's associated video display
characteristics are input from the CRT. This information is
moved to the request completion message.

d. The CURSOR is restored to its orginal screen position
(Reading the character in previous step caused cursor to move
forward) by outputting a BACKSPACE control character to the
CRT controller.

e. The X,Y co-ordinates for the current position of the CRT's

CURSOR are input and moved to request completion message.

f. The Completion message is sent to requesting task.

g. Control is returned to Main Control section.

ART2075S-94548 . D980-81

4.3.5 CRT Function Processing (CDFNCTHN)

This section processes 40-815 CRT Function requests and returns a
completion message to the requesting task to indicate whether or

not the request was successfully processed.

There are two different types of function commands:
a. The Control Funtion Output commands

Set/Clear Alarm Output Contact.

Initiate Copier Operation.

Enable/Disable Lite Pen.
Enable/Disable Keyboard/Function Keys.

L &&= W N -

. Master Clear CRT Controller.

b. The Operational Mode Change commands

Clear All Currently Selected Operational Modes.
Select Insert Character in Field/Page Mode.
Select Insert Character in Field/Line Mode.

i Select Scroll-Up Mode.

Select Scroll-Down Mode.

oW

Select Scroll-Up Mode.

The first type of function commands are output to the CRT
Controller using function outputs that the Controller is designed
to process. The second type of function commands are output to the
CRT Controller by outputting the appropriate control characters.

A CRT Function request is processed in the following manner.

a. If requester wants any Operational Mode Change type function

commands output, the MODE_SEL subroutine is called.

b. If requester wants any Normal Function type commands output,

the FUNC_SEL subroutine is called.

ART2075S-94548S D980-82

c. If requester wants CURSOR moved to a specified screen
position, the MOVE_CUR subroutine is called.

4. A Request Completion message is generated and sent to the
requesting task.

e. Control is returned to the Main Control section.

ART2075S8-9454S D980-83

4.3.6 CRT Data Read Processing (CDREAD)

The CDREAD subroutine handles the processing of a CRT Read

request. A CRT Read request is processed as follows:

a. The PRE_PROC subroutine is called to perform all necessary

pre-read operations. These operations include:

1. Disabling the CRT controller's keyboard and lite pen.
2. Inputting and saving the X,Y co-ordinates for the
position of the CRT's cursor.
Inputting and saving CRT's selected video display options.
4, Moving cursor to a screen position that the requester has

specified (optional).

b. The READ_CRT subroutine is called to actually input the data.
The READ_CRT subroutine should be referred to for a discussion
of the various options that may be selected during the data
@Wh input operation.

c. The POST_OPT subroutine is called to perform all necessary

post-read operations. These operations include:

1. Returning CRT controller to the appropriate protected/
unprotected mode of operation.

2. Positioning the CRT controller's to the position
specified by the requester. The requester can specify
that the cursor be moved to the HOME position, its
pre-read position, or its current position.

3. Optionally reselecting the video display options that
were selected for the CRT controller prior to the read
operation.

4. Optionally enabling/disabling the CRT controller's
keyboard/function keys.

5. Optionally enabling/disabling the CRT controller's lite

ﬁ@h pen unit interrupt.

ART2075S-9454S D980-84

6. Optionally re-storing the CRT controller's keyboard/

function keys to their pre-read operation
enabled/disabled state.

7. Optionally re-storing the CRT controller's Lite Pen unit
interrupt to its pre-read enabled/disabled state.

d. A request completion message is send back to the task that
requested the read operation. This message contains both read

completion flags and the address of the chain of Data buffers
used for the data.

e. Control is returned to the Main Control section.

4.3.6.1 CRT Data Read (READ_CRT)

This subroutine reads a specified number of characters beginning at
a specified point on the CRT screen. The data read is saved in a

chain of Data buffers which is either provided by the requester or

allocated by this subroutine depending upon the option specified.

If the requester wants the video display characteristics (color,
blink mode, and inverse video mode) associated with the data
characters read to be preserved, this subroutine inserts the
necessary video Display Option Select control characters into the
read data. At the requester's option, this subroutine also
suppresses strings of repeated, non-inverse space characters; these
these character strings are replaced by POSITION CURSOR commands.
At the requester's option, this subroutine also compresses repeated
character strings; these strings are replaced by EXPAND COMPRESSED
STRING commands. The CRT Write Request Processing subroutine scans

for these commands and processes the ones found.

 ART2075S-9454S D980-85

4.3.6.2

4.3.6.3

4.3.6.4

Edit Character/Video Status (EDIT_CHR)

This subroutine performs the following two basic functions:

a. If the current character is a non-inverse mode space character
and the requester wants the video display characteristics
preserved, the previous character's blink and color video
display options are substituted for the current character's
blink and color. (This has effect of not allowing a space
character to cause a non-seeable change in the selected video

display options).

b. Replace the END-OF-LINE flag in the character's video status
flags with a TABBED POSITION flag. This step simplifies the
procedure required to preserve tabbed position information

during a read operation.

Move Position Cursor Command to Buffer (POS_SEQ)

This subroutine simply moves the POSITION CURSOR command prosign
character and the X and Y co-ordinates for the current position of
the CURSOR to the read data buffer. The SAV_CHAR subroutine is
used to move these characters to the read buffer. The X and Y
co-ordinates for the current position of the CURSOR are obtained

from the X_CURSOR and Y_CURSOR cells.

Move Video Control Characters to Buffer (INS_VIDE)

This subroutine preserves the video display characteristics of the
data being read. Prior to moving a data data character to the data
read buffer, this subroutine is called to determine which video
Display Option control characters are necessary to preserve the

character's visual display characteristics and move these control

characters to the data read buffer.

ART20755-9454S D980-86

4.3.6.5

When called the first time for a request, this subroutine moves
control characters for all the selectable video display
characteristies to the data read buffer. For the remaining calls,
video Display Option control characters are moved to the read
buffer only when necessary because of a change in video display

characteristics from the previous character moved to the read
buffer.

This subroutine also determines if the character was read from a
tabbed screen position and moves a SET TAB control character to the

data read buffer when this is the case.

Move Character to Buffer (SAV_CHAR)

This subroutine saves a character in a Data buffer and updates the
buffer accounting information flags to reflect the data moved to
the buffer. Prior to the first call to this subroutine, the DBUF
INT subroutine must have been called to set up the Data Storage
Control flags used by this subroutine. The requesting task may
have provided the Data buffers to be used or it may have requested
that the DCI Driver allocate the Data buffers needed.

If this subroutine is called when the current Data buffer is full,
it saves the character temporially and then determines how to
proceed. If the requesting task has provided the Data buffers to
be used, this subroutine either stores the character in next buffer
if there is one or ignores the character and returns an error
indicator. Otherwise if the driver is supposed to allocate the
Data buffers needed, this subroutine allocates a Data buffer,
threads it to the current one, calls the DBUF_INT subroutine to
initialize this subroutine's control flags for the new Data buffer

and finally saves the character in the new buffer.

The NUM_SAVD flag is incremented every time a character is saved by

this subroutine.

ART20755-9454S D980-87

GWh 4.3.6.6 Initialize Data Storage Flags (DBUF_INT)

This subroutine sets up a Data buffer's header and data storage
areas to indicate that the Data buffer is empty and it also sets up
the Data Storage Control flags used by the SAV_CHAR subroutine when

it stores characters into this Data buffer.

The Data buffer is initialized to indicate that it is empty because
the requester may have provided the Data buffers being used and we
want the requester to be able to re-use Data buffers without having

to zero out the buffer character counts.

The Data Storage Control flags set up for the SAV_CHAR subroutine

include:

a. CHR_ADDR -- Address of first storage byte in Data buffer's

data storage area.

fwh b. BUF_ROOM -- Number of bytes available in the Data buffer's

data storage area.

ART2075S-9454S D980-88

4.3.7 CRT Write Request Processing (CDWRITE) -

The CDWRITE subroutine handles the processing of write requests. A
CRT Write request is processed in the following fashion:

a. The PRE_PROC subroutine is called to perform all the necessary

pre-write operations. These operations include:

1. Disabling the CRT controller's keyboard and lite pen.

2, Inputting and saving the X,Y co-ordinates for the
position of the CRT controller's cursor.

3. Inputting and saving the CRT controller's selected video
display options.
Optionally clearing the CRT controller's screen.
Optionally positioning the cursor to a screen position
that the requester has specified.

b. The WRIT_CRT subroutine actually outputs the data provided.
The WRIT_CRT subroutine should be checked for a discussion of

how embedded command sequences are processed.

c. The POST_OPT subroutine is called to perform all necessary

post-write operations. These operations include:

1. Returning CRT controller to appropriate protected/
unprotected mode of operation.

2. Positioning the CRT controller's to the position
specified by the requester. The requester can specify
that the cursor be moved to the HOME position, its
pre-write position, or its current position.

3. Optionally reselecting the video display options that
were selected for the CRT controller prior to the write
operation.

4. Optionally enabling/disabling the CRT controller's
keyboard/function keys.

5. Optionally enabling/disabling the CRT controller's lite
pen unit interrupt.

ART20755-94548 D980-89

4.3.7.1

6. Optionally re-storing the CRT controller's keyboard/
function keys to their pre-write state.
y Optionally re-storing the CRT controller's Lite Pen unit

interrupt to its pre-write state.

C.. A completion message is send back to the task that requested
the write operation. This message contains both write
completion flags and the address the chain of data buffers

(zero if driver was directed to release the data buffers).

d. Control is returned to the Main Control section.

CRT Data Write (WRIT_CRT)

This subroutine outputs the data to the specified CRT. The data is
located in a chain of Data buffers. The requester passes the
address of the Data buffer chain in the write request. The
internal buffer character count fields in the Data buffers control
the access of the output data. When all the data has been output,
this subroutine releases the chain of Data buffers if this option

has been selected.

As the data is being output, it is scanned for embedded POSITION
CURSOR, EXPAND COMPRESSED STRING, and VIDEO SELECT commands.

These embedded commands are recognized by their prosign

characters. The CURSOR symbol (11H) is prosign character for the
POSITION CURSOR command. The REPEAT symbol (12H) is the prosign
character for the EXPAND COMPRESSED STRING command. The VIDEO
symbol (13H) is the prosign character for the VIDEO SELECT command.

When a CURSOR character is found, the next two output characters
are expected to be the X,Y co-ordinates for the new position to
which the cursor is to be moved. The cursor is moved there by
calling the MOVE_CUR subroutine. (Note: X,Y coordinates are not

validated).

ART2075S-94548 D980-90

4.3.7.2

When a REPEAT character is encountered, the next output byte is the
character which is be repeated and following byte is the number of

times that it is be output. The character is simply output to the

CRT the number of times specified.

When a REPEAT character is encountered, the next output byte is a
set VIDEO MODES flags. The appropriate control character are
output to the CRT to ensure that the VIDEO DISPLAY OPTIONS
indicated the flags are selected at the CRT.

Normal data characters are of course simply output to the CRT.

Output Data SCanning Scheme

To simplify the output data scanning operation, a Character
Classification table is used to classify each character as to its
processing type. The current character is used as an index to this
table to obtain the character's Processing Type code. A
character's processing type code is then used to determine which
section of this subroutine should process the current character and

then control is transferred there.

Get Character from Data Buffer (GET_CHAR)

This subroutine obtains the next character from the requester's
chain of data buffers. The data character is returned to the
caller in bits 7-0 of the D7 register and the number of characters
left in the current data buffer is returned to caller in bits 15-0
of the D6 register. (NOTE: A negative value returned in the D6
register indicates that all the output data has already been
processed.)

A GET_CHAR subroutine call is processed in the following manner:

a. A check is made to determine if the current data buffer

contains another unprocessed data character.

ART2075S-9454S D980-91

1. If current data buffer still contains unprocessed data
characters, decrement the Number of Characters Remaining
in Current Data Buffer flag (NUM_LEFT) and get the
address of next character to be processed from the NXT
ADDR flag.

2. If current data buffer is empty, a check is made to
determine if there is another data buffer threaded to the
current data buffer.

a) If there is another data buffer threaded to the
current one that needs to be processed yet, the
FLGS_INT subroutine is called to re-initilize this
subroutine's control flags so that the data in the
next data buffer can be accessed and then Step A is
repeated again.

b) If there is no more output data, an error indicator

is returned to the caller.

A character is obtained from current Data buffer and the Next
Character Address flag (NXT_ADDR) is updated.

Control is returned to caller. The character and the number
of characters remaining in current Data buffer are passed to

the requester in the D7 and D6 registers.

4.3.7.3 Initialize Data Access Flags (FLGS_INT)

This subroutine initializes the control flags used by the GET_CHAR

subroutine to control the access of data contained in a Data buffer.

An Initialize Data Buffer Access Flags subroutine call is processed
as follows:

ART20755-94548

The address of the data buffer is saved in the Current Data
Buffer Address flag (OUT_DBUF).

The address of the first byte is moved to the Next Output
Character Address flag (NXT_ADDR).

D980-92

c. The data buffer character count is used to initialize the
Number of Characters Left in Current Data Buffer flag
(NUM_LEFT).

d. Control is returned to the caller.

ART2075S-94548 D980-93

@Wh 4.3.8 Multiple Field Read Processing (CDFIELD)

The CDFIELD subroutine handles the processing of a Multiple Field
Read request. A Multiple Field Read request is processed as
follows:

a. The PRE_PROC subroutine is called to perform all necessary

pre-read operations. These operations include:

1. Disabling the CRT controller's keyboard and lite pen.
Inputting and saving the X,Y co-ordinates for the
position of the CRT's cursor.

3. Inputting and saving CRT's selected video display options.
Moving cursor to a screen position that the requester has

specified (optional).

b. The FREAD_CRT subroutine is called to actually read the screen
@@a fields sgpecified.

c. The POST_OPT subroutine is called to perform all necessary

post-read operations. These operations include:

1. Returning CRT controller to the appropriate protected/
unprotected mode of operation.

2. Positioning the CRT controller's to the position
specified by the requester. The requester can specify
that the cursor be moved to the HOME position, its pre
read position, or its current position.

3. Optionally reselecting the video display options that
were selected for the CRT controller prior to the read
operation.

4, Optionally enabling/disabling the CRT controller's
keyboard/function keys.

S. Optionally enabling/disabling the CRT controller's lite
pen unit interrupt.

ART2075S-9454S D980-94

6. Optionally re-storing the CRT controller's keyboard/
function keys to their pre-read operation enabled/
disabled state.

7. Optionally re-storing the CRT controller's Lite Pen unit
interrupt to its pre-read enabled/disabled state.

d. A request completion message is send back to the task that
requested the read operation. This message contains both read
completion flags and the address of the chain of Data buffers
used for the data.

e. Control is returned to the Main Control section.

4.3.8.1 Multiple Field Read (FREAD_CRT)

This subroutine reads the specified fields from the CRT screen.
The data read is saved in a chain of Data buffers which is either

provided by the requester or allocated by this driver depending
upon the option specified.

The requester's data field definition packets are used to determine
which fields to read. The data fields are of course read in the
same order that the data field definition packets are ordered.

Each field definition packet defines the starting position of a
field and the length of the field.

Each field read is saved in the read data buffer as follows:

a. A POSITION CURSOR command, that will move the cursor to the

beginning position of the field, is moved to the data read
buffer.

b. The actual field data is moved to the data read buffer. The
field data will be represented as follows:

ART20755-9454S D980-95

4.3.8.2

1. A VIDEO SELECT command is located in front of the first
field character and in front of any field character that
has different video display characteristics than those of
the preceeding character.

2. The actual field data characters are stored in the order

that they appear in the screen field.

This format allows the field data read to be processed easily and
it also allows this data to be rewritten to the screen.

The FLGS_INT and NXT_BYTE subroutines are used to handle the access
of information from the data field definition packets. The DBUF
INT and SAV_CHAR subroutines are used to store the data/control
information needed to satify this type of request.

Get Byte from Data Buffer (GET_CHAR)

This subroutine obtains next byte from the requester's chain of
data buffers which contain the data field definition packets. The
control byte is returned to the caller in bits 7-0 of the D7
register and the number of bytes left in the current Data buffer is
returned to caller in bits 15-0 of the D6 register.

NOTE: A negative value returned in D6 register indicates that all
control bytes have already been obtained.

A NXT_BYTE subroutine call is processed in the following manner:

a. A check is made to determine if the current data buffer

contains another unprocessed byte.

1. If current data buffer still contains unprocessed control
bytes, decrement the Number of Bytes Remaining in Current
Data Buffer flag (B_LEFT) and get the address of next
byte to be obtained from the BYTE_ADR flag.

ART20758-9454S D980-96

ART2075S8-9454S

2. If current data buffer is empty, a check is made to
determine if there is another data buffer threaded to the
current data buffer.

a) If there is another data buffer threaded to the
current one that needs to be processed yet, the FLGS
INT subroutine is called to re-initilize this
subroutine's control flags so that the bytes in the
next data buffer can be accessed and then Step A is
repeated again.

b) If there is no more control bytes, an error

indicator is returned to the caller.

A control byte is obtained from the current Data buffer and
the Next Byte Address flag (BYTE_ADR) is updated.

Control is returned to caller. The control byte and the

number of bytes remaining in current Data buffer are passed
to requester in the D7 and D6 registers.

D980-97

4.3.9 Read/Write Request Preprocessing (PRE PROC)

The PRE_PROC subroutine performs those common operations associated
with data read/write requests that must be done before the actual
data input/output operations. These operations include:

a. Disabling the CRT controller's keyboard and lite pen.

b. Inputting and saving the X,Y co-ordinates for the current

position of the CRT controller's cursor.

c. Inputting and saving the CRT controller's selected video

display options.

d. Optionally clearing the CRT controller's screen (Applicable

only for write requests).

e. Positioning the cursor to a position that the requester has

specified (optional).

This subroutine accesses the request parameters located in the DCI

Card driver main control module (DCI_DRIV).

ART2075S-94548 D980-98

4.3.10 Read/Write Request Post-processing (POST OPT)

The POST_OPT subroutine performs those common operations associated
with data read/write requests that must be done after the actual
data input/output operations. These operations include:

a. Returning the CRT contrbller to the appropriate protected/
unprotected mode of operation.

b. Positioning the CRT controller's to the position specified by
the requester. The requester can specify that the cursor be
moved either to the HOME position or its orginal position.
The requester can also choose to let the cursor remain in its
current position.

c. Optionally reselecting the video display options that were
selected for the CRT controller prior to the data read/write

request.

d. Optionally enabling/disabling the CRT controller's keyboard/
function keys.

e. Optionally enabling/disabling the CRT controller's lite pen
unit interrupt.

f. Optionally re-storing the CRT controller's keyboard/function
keys to their orginal state.

g. Optionally re-storing the CRT controller's lite pen unit
interrupt to its orginal state.

This subroutine accesses the request parameters located in the DCI
Card driver main control module (DCI_DRIV).

ART2075S5-9454S D980-99

4.3.11

Get Video Display Characteristics (GET VID)

This subroutine determines which video display options are
currently selected for the requester's CRT and returns this
information to the caller.

The CRT controller doesn't provide a status that tells which video
display options are selected unfortunately; It does provide a
status function that gives the video display characteristics
associated with last character read. The video display
characteristics associated with a character are determined by the
video display options selected at the time the character was
written. The CRT controller also allows its cursor to moved to a

position off the end of the screen which isn't visable to the
operator.

These hardware features are used in the following fashion to

determine the video display options currently selected for the CRT

controller:

a. The X,Y co-ordinates for current position of the cursor are

input and saved.

b. The cursor is moved to a position off the end of the CRT

screen.

c. A Space character is written there.

d. A Backspace Cursor control character is output.

e. The Space and its associated video display characteristics are
input. The associated video display characteristics of the

Space character reflect the selected video display options.

f. The cursor is returned to its orginal position.

ART2075S-9454S D980-100

8- Control is returned to caller with the Selected Video Display
Options information stored in the D7 register.

Bits 5-3 -
Bit 2 -- Inverse Video Mode Enabled.
Bit 1 -- Protected/Tabbed.

Bit 0 -- Blink Mode Enabled.

Color Code.

NOTE: The Selected video Display Options information is saved in
the VID_STAT flag which is a global variable located in the
Main Control module.

ART20758-94558 D980-101

4.3.12 Select Video Characteristics (SET VID)

The subroutine outputs the control characters necessary to ensure
that the specified set of video display is selected at the
requester's CRT controller.

The caller passes flags in D7 indicating the set of video display
options that he wants selected. These flags are defined as follows:

Bits 5-3 —- Color Code.

Bit 2 —- Inverse Video Mode Enabled.
Bit 1 -- Protected/Tabbed.

Bit 0 —-

Blink Mode Enabled.

A SET_VID subroutine call is processed in the following manner:

ART2075S-94558

The caller's Video Display Option flags are saved in the VID
PARM flag.

The appropriate Color Select control character is output to
the CRT controller using the WRT_CHAR subroutine.

Either a Clear Inverse Video Mode or a Select Inverse Video
Mode control character is output to the CRT controller
dependiﬁg upon the mode desired by the caller. The WRT_CHAR
subroutine is used to output the control character to the CRT
controller.

Either a Blink Mode Off or a Blink Mode On control character
is output to the CRT controller depending upon the blink mode
desired by the caller. Again, the WRT_CHAR subroutine is used
to output this control character to the CRT controller.

Control is returned to the caller.

D980-102

4.3.13

4.3.14

Get Cursor Position (GET CUR)

This subroutine inputs the CRT controller's STATUS FOUR and STATUS
FIVE bytes (X,Y co-ordinates for the current position of the
cursor). The cursor's X,Y co-ordinates are returned to caller in

the D7 register (X ordinate in bits 15-08 and Y ordinate in bits
07-00).

This subroutine utilizes the memory mapped I/0 register addresses

set up by the DCI Card driver's main control module (DCI_DRIV) to
communicate with the appropriate CRT controller.

Move Cursor Subroutine (MOVE CUR)

This subroutine outputs the CRT Controller CONTROL FOUR and CONTROL
FIVE commands required to move the cursor to the screen position
specified. The caller passes the X,Y co-ordinates for the new
cursor position in the D7 register (X ordinate in bits 15--08 and Y
ordinate in bits 07--00).

This subroutine utilizes the memory mapped I/0 register addresses
set up by the DCI Card driver's main control module (DCI_DRIV) to

communicate with the appropriate CRT controller.

ART2075S-94558 D980-103

-

4.3.15

Read Character (READCHAR)

This subroutine inputs a single character from the CRT controller.
The current position of the CRT's cursor determines the screen
position read. Because of the hardware's read ahead feature, it is
really impossible to just read a single character. As soon as a
character is input from a DCI card, the DCI automatically begins
obtaining the next character from the CRT. The hardware access of
the next character occurs concurrently with the processing of the
current character. This means that the cursor must be moved back

one space to leave it at the right place on the screen.

This subroutine is designed for those cases where only one

character needs to be input.

This subroutine follows the procedure listed here:

a. It tells DCI to get a character from the CRT.

b. It waits until DCI has obtained the character.

c. It inputs the character from the DCI.

d. It waits for DCI to finish obtaining the next character from
the CRT.
e. It tells DCI to output a Backspace Cursor control character to

the CRT. This returns the cursor to the position following
the first character read. The WRT_CHAR subroutine is used to

perform this step.

£. It returns control to caller with the character in lower byte

of the D7 register.

This subroutine utilizes the memory mapped I/0 register addresses
set up by the DCI Card driver's main control module (DCI_DRIV) to

communicate with the appropriate CRT controller.

- ART2075S-94558S D980-104

4.3.16 Write Character (WRT CHAR)

This subroutine outputs a single data/control character to a CRT.
The character to output is passed in the lower byte of the D7
register. Control isn't returned to the caller until CRT has
finished processing the character.

This subroutine follows the procedure listed here:

a. It ocutputs character to DCI and tells DCI that it wants
character output to the specified CRT.

b. It waits until DCI has transferred character to the CRT and
the CRT has processed the character. The CRT_OK subroutine is
used to perform this step.

c. It returns control to the caller.

This subroutine utilizes the memory mapped 1I/0 register addresses

set up by the DCI Card driver's main control module (DCI_DRIV) to
communicate with the appropriate CRT controller.

ART20758-94558 D980-105

4.3.17

4.3.18

Wait until DCI Ready (DCI OK)

This subroutine delays further processing until a DCI ecard is no
longer busy. This subroutine is called before any functions are
output to either a DCI itself or any CRT controllers connected to
the DCI. This is necessary because the Memory Mapped I/0 Register
scheme used to communicate with the DCI doesn't allow the DCI to
reject a function if it is still busy processing a previous one.

If a command is output to the DCI while it is still busy processing

a previous command, the response of the DCI is not predicatable.

A counter is used to ensure that we don't wait for longer than a
reasonable amount of time for a DCI to become NOT BUSY. If DCI get
hung up BUSY, this subroutine should detect this error condition

and report it to Configuration Control task.

Wait until CRT Ready (CRT 0OK)

This subroutine delays further processing until a CRT CRT
controller is no longer BUSY. This subroutine is called to
determine if the CRT controller is ready for another data/control
character during output operations. Data characters are handled by
the CRT Controller as fast as they can be output, but there are
special edit control function characters that can take up to 2.5
milliseconds to be processed by the CRT controller. Using the
End-of-Operation interrupt to control the output of data to the CRT
Controller would slow the transfer rate tremendously; therefore
this subroutine is used to control the operation when special

control characters must be output to a CRT.

A counter is used to ensure that we don't wait for longer than a
reasonable amount of time for a CRT controller to become NOT BUSY.
If a CRT controller get hung up BUSY, this subroutine should detect
this error condition and réport it to the Configuration Control
task.

ART2075S-94558 D980-106

4.3.19

Output Function to CRT (CDFOUT)

This subroutine is used to output CRT controller function commands
that can not be ocutput using special control characters. These
include function commands to accomplish the following actions:

a. Master clear the CRT controller.

b. Enable controller's keyboard/function keys.

c. Disable controller's keyboard/function keys.

d. Enable the controller's lite pen.

e. Disable the controller's lite pen.

f. Initiate a copy operation to CRT Controller's slave print
device (never used).

8- Set CRT controller's “ALARM OUTPUT" contact.
h. Clear CRT controller's "ALARM OUTPUT" contact.

This subroutine updates the CRT's CURRENT UNIT STATUS flags to
reflect the function command(s) and then it outputs the function
commands required to ensure that the controller is operating in the
manner indicated by its CURRENT UNIT STATUS flags.

NOTE: A Master Clear function request must be issued alone because
this function request overrides any other function requests

accompanying it.
Caller passes request command flags in the D7 register.
Bit 7 -- Clear the Alarm Cutput Contact.

Bit 6 — Set the Alarm Output Contact.
Bit 5 -- Initiate Copy Operation.

ART2075S-9455S D980~107

Bit 4 -- Disable Lite Pen.

Bit 3 ~- Enable Lite Pen.

Bit 2 -- Disable Keyboard/Function Keys.
Bit 1 -- Enable keyboard/Function Keys.
Bit 0 -- Master Clear Controller.

4.3.20 OQutput Mode Change to CRT (CDVMODE)

This subroutine outputs the control characters necessary to
communicate operation mode changes to a CRT controller. These
operational mode changes include the following:

Clearing all selected special operational modes
Selecting insert character/page mode

Selecting insert character/line mode

Selecting scroll down mode

Selecting scroll up mode

0 06 0 0 o o

Selecting protected mode

This subroutine updates the CRT's Current Unit Status flags to
reflect the operational mode change commands and then outputs the
control characters required to ensure that the CRT controller is

operating in manner indicated by its Current Unit Status flags.

The request command flags passed by caller in the D7 register are
defined as follows:

Bit 5 -- Clear Selected Modes.

Bit 4 -- Select Insert Character/Page Mode.
Bit 3 —- Select Insert Character/Line Mode.
Bit 2 —- Select Scroll Down Mode.

Bit 1 —- Select Scroll Up Mode.

Bit 0 —- Select Protected Mode.

ART2075S8-94558 D980-108

4.4

4.4.1

4.4.2

DATA ORGANIZATION

DCI Driver Task Identifier (DCI TASK)

Application task that want to send requests to the DCI Driver task
need the DCI Driver's TASK IDENTIFIER in order to be able to send
an intertask message to the DCI Driver.

When the DCI Driver task is created and runs the first time, it
obtains its TASK IDENTIFIER from the RUNNING cell in the
Executive's Configuration Information table and stores it in the
DCI_TASK cell which is globally defined.

DCI/CRT Configuration Information Table (DCI INFO)

When the DCI.Driver is processing requests and interrupts, it must
know both how many DCI cards there are configured in the MCU and
how many CRTs are connected to each DCI card. When the DCI Driver
is processing interrupts, it also needs to know the CYBER Equipment
Number (CEN) that is associated with the first CRT connected to
each DCI card. It is understood that all the CRTs connected to a

DCI card will have consecutive CENs.

Configuration Control maintains data base tables that hold this
type of hardware configuration information. A macro has been
provided by the Configuration Control subsystem which will move
this information to a user provided area.

The hardware configuration information provided by the
CC_DCI_INFO_MAC macro is formatted as shown here:

ART2075S-94558 D980-109

DCI ONE'S ISB SLOT NUMBER

+00

! '
' !
+#02 ! NUMBER OF CRTS ON DCI ONE !
' '
+04 ! BASE CEN FOR CRTS ON DCI ONE !
! !
+06 ! DCI TWO'S ISB SLOT NUMBER !
! -t
+08 ¢ NUMBER OF CRTS ON DCI TWO !
! !
+0A ! BASE CEN FOR CRTS ON DCI TWO !

This makes it unnecessary for the DCI Driver to know anything about
the structure of the Equipment Configuration Information tables
that Configuration Control maintains.

When the DCI Driver task is created and runs the first time, it
calls the Configuration Control subsystem to have it move this
information to the DCI_INFO table.

DCI_INFO

DCI1SLOT ! DCI ONE'S ISB SLOT NUMBER ! +00
[} [}

DCI1CRTS ' NUMBER OF CRTS ON DCI ONE ' 402
[] [

CRT1BASE ' BASE CEN FOR CRTS ON DCI ONE é +04
1

DCI2SLOT ' DCI TWO'S ISB SLOT NUMBER ' 406
[] 1]

DCI1CRTS é NUMBER OF CRTS ON DCI TWO g +08

CRT1BASE ' BASE CEN FOR CRTS ON DCI ONE ! +0A

Each DCI_INFO table entry is globally defined so that its contents
can be referenced directly by the DCI Driver sections that require
this information.

It is assumed that a MCU will be configured with either one or two
DCI Cards. The DCI1SLOT entry indicates which ISB slot is supposed
to contain the first DCI card. If the MCU contains two DCI cards,
the DCI2SLOT entry indicates which ISB slot is supposed to contain
the second DCI card; otherwise if the MCU has only one DCI, the
DCI2SLOT entry contains a negative value to indicate this fact.

ART2075S-94558 D980-110

4.4.3

4.4.4

Command Zero I/0 Repister Addresses

The DCI_CMDO table contains a long word entry for each possible DCI
card that may be configured in an MCU. It is assumed that an MCU
will be configured with one or two DCI cards. Thus this table has
two entries and each entry holds the address of the Memory Mapped
I/0 register to be used to transfer COMMAND ZERO bytes to the
corresponding DCI card. The DCI Driver needs to know these

addresses in order to be able to talk to the hardware.

The two entries are labeled DCI1CMDO and DCI2CMDO for easier
reference.

When the DCI Driver task is created and runs the first time, it
uses the DCI hardware configuration information that it obtains
from the Configuration Control subsystem to generate the entries in
this table.

CRT Input I/0 Register Address (DCI INPT)

The DCI_CMDO table contains a long word entry for each possible DCI
card that may be configured in an MCU. It is assumed that an MCU
will be configured with one or two DCI cards. Thus this table has
two entries and each entry holds the address of the Memory Mapped
I1/0 register to be used to input the data and status information
from a CRT Controller connected to the corresponding DCI card. The
DCI Driver needs to know the address of these I/0 registers in
order to get the data/status information that a DCI card has

retrieved from one of the CRTs that is connected up to it.

The two entries are labeled DCI1INPT and DCI2INPT for easier

reference.

When the DCI Driver task is created and runs the first time, it
uses the DCI hardware configuration information that it obtains

from the Configuration Control subsystem to generate the entries in
this table.

ART20758-9455S D980-111

4.4.5

CRT CEN to Physical Address Conversion Table

The Configuration Control subsystem maintains data base tables that
can be used to convert a CRT CYBER Equipment Number (CEN) to its
corresponding physical address. The CYBER Equipment Numbers are
logical addresses that have been assigned to the hardware

components by the Data Base Generation subsystem.
A CRT physical address has two components:

a. The number of the ISB slot holding the DCI card to which the

CRT is connected.

b. Tﬁe CRT unit number. This }s a number that is set in the CRT
Controller unit.

The Configuration Control subsystem has provided a macro CC_CRT
INFO_MAC that can be used to convert a CRT CEN to its corresponding
physical address. This makes it unnecessary for the DCI Driver to
inow anything about the structure of the Equipment Address
Conversion tables that the Configuration Control subsystem

maintains.

ART2075S-94558 D980-112

4.4.6 Functional Features/Operational Modes Table

The 40-815 CRT Controller has several operational modes that can be

enabled/disabled by outputting appropriate control characters to
the CRT controller.

These operational modes are:

Protected mode
Scroll up mode
Scroll down mode

Insert character in field/line mode

© ©0 0 o0 ©o

Insert character in field/page mode

The 40-815 CRT Controller doesn't however provide a status function
that can be used to determine if the controller has these
operational modes selected.

This means that a record must be maintained to indicate if the
controller is supposed to have any of these operational modes
selected. This record can be accessed when the proper operation
modes for the controller are required. Since these operational
modes get cleared during the processing of data read/write
requests, this Operational Modes record is needed to restore the
CRT controller to the proper state after the processing of such
requests. This record also allows Operational Modes information to

be provided when a CRT Status request is processed.

The 40-815 CRT Controller also has an Alarm Output Contact that can
be both set and cleared by function outputs to the controller. The
CRT Controller does not however provide a status to determine
whether the Alarm Output Contact is set or cleared. This Alarm
Output Contact may also get cleared during the normal processing of
requests. This means that a record must be maintained of the
correct state of the Alarm Output Contact so that it can be
restored after the processing of a request. Again, this record can

also be used to provide information on this feature when a CRT
Status request is processed.

ART20758-94558 D980—il3

4.

4,

7

The 40-815 CRT Controller can support a Lite Pen unit. If a Lite
Pen is connected to the CRT controller, its operation can be
enabled and disabled using function outputs to the controller.
Again, however there is no status function that can be used to
determine the current enabled/disabled state of the Lite Pen unit.
A record must be maintained of the appropriate state for the Lite

Pen unit for the same reasons mentioned above.

This information must be maintained for each CRT and the CRT
Current Status table is used to maintain this information. This
table contains an eight bit entryfor each CRT and it is sized for
the maximum hardware configuration (two DCI cards with sixteen CRTs

connected to each DCI card).

Entries in the CRT Current Status table are formatted as follows:

Bit 7 —— Console Alarm Set

Bit 6 —- Lite Pen I/0 Enabled

Bit 5 —- Keyboard/Function Keys Enabled
Bit 4 — Insert Page Mode Selected

Bit 3 —- Insert Line Mode Selected

Bit 2 —- Scroll Down Selected

Bit 1 —- Scroll Up Selected

Bit 0 —- Protected Mode Selected

Unit Up/Down Operational Status Table

The Configuration Control subsystem maintains data base tables that
keep track of the UP/DOWN status of the DCI cards and the CRTs

connected to these DCI cards.

Again, Configuration Control has provided a macro that can be used
to obtain the operational status of the system's hardware
components. When a request is processed, the CC_CRT_STATUS_MAC
macro is used to determine if the request unit is available. If
the requested unit is down, the request is of course completed with

a CRT Down indication.

ART20755-9455S D980-114

4.4.8

Utilization of Chains of Data Buffers

Chains of CDNA Executive Data buffers are utilized to hold the data
that the DCI Driver reads from and writes to the CRTs.

A chain of Data buffers consists of one or more Data buffers that
are threaded together. A Data buffer chain is identified by the
address of the first Data buffer in the chain. The first location
of each chain member contains either the address of the next member
or a CHAIN TERMINATOR indicator (zero). The Executive maintains a
pool of available Data buffers and provides directives that can be
used to allocate release chains of data buffers. On allocate
requests, the requester specifies the length of the buffer chain
desired, (i.e. the number of data buffers wanted).

Although a Data buffer is considered to be a single logical entity,
it really consists of two physical parts. The first physical part
of a Data buffer is really just a Descriptor buffer. The Data
Storage Area Pointer in this Descriptor points to a separate Data
Storage Area buffer rather than to its own internal data storage
area. It is important to note that more than one Data buffer can
share the same Data Storage Area buffer (see Usage Count field in
the Data Storage Area buffer).

ART2075S8-94558 D980-115

ART20755-9455S

00

02

04

06

08

10

12

14

16

18

20

22

24

00

VB VW PB WD D 1B VB IV B D VB D IV D VW IS IS I D W

" '@ e @

- e re

SYSTEM DATA BUFFER

The Next Data
Block Address or -
Thread Terminator

Ignored by Driver -

The Address of this
Descriptor Block's -
Data Storage Area.

Data Offset (Bytes)

Buffer Count (Bytes)

Message Count (Bytes)

Descriptor Usage Count

The Descriptor Block's
Data Storage Area.
(Not used)

Block Usage Count

The Data Storage Area
Buffer.

The Size of this Area
is a configuration
parameter.

D980-116

D AP D VD LB O LD B W LD B L@ 1B D 1B I W LD 1D LD B W B P S @

"o ‘e e e

A
!
!
|
{
}
|

-O-'-Q.l-.-c-.-..i-t-o-‘-‘-.-0-0QUC.-C-.-/

4.5 SUBSYSTEM CHECKPOINT REQUIREMENTS

This Driver has no data that needs to be checkpointed.

4.6 INITIALIZATION REQUIREMENTS

Configuration Control ensures that the DCI Driver software and
control tables have been downloaded to MCU first. Then,
Configuration Control creates the DCI Driver task using one of the
Executive's task creation directives. When the DCI Driver task is
created, the DCI Driver task initialization module (DCI_STRT) gets

control and completes any other needed initialization functions.

ART20755-94558 D980-117

@mm 4.7 SUBSYSTEM INTERFACE

The DCI/40-815 CRT Controller Driver is set up as an applications
software task and the other application tasks utilize the CDNA
Executive's SEND NORMAL MESSAGE directive to send requests to the
DCI Driver. To send a request to the DCI Driver task, the
requesting task must supply the DCI Driver's Task Identifier. The
DCI_TASK cell holds the Driver's Task Identifier for those
application programs that need it.

The Driver uses a RECEIVE NORMAL MESSAGE directive to obtain
requests for processing. The CDNA Executive's intertask message
scheme is utilized by the DCI Driver to serialize its processing of
the requests sent to it. Since the Executive treats all messages

the same, DCI Driver request processing occurs on a FIRST IN/FIRST
OUT basis.

Every request sent to the DCI Driver must contain the requesting

task' Task Identifier so that the Driver can sent a Request
Processing Completion message to the requesting task after it has
completed processing the request. This Request Completion message
contains a request completion code and any other relevant request
processing information such as the'number of characters actually
read for a CRT Read request or the CRT status for a CRT Status

request.

The request type code are defined in the DCKEQUS comdeck which is
contained in the DIKPL program library under userid APD.

ART2075S-94558 D980-118

@M\ 4.7.1 CRT Status Reguest/Resgonée Formats

4.7.1.1 CRT Status Request Format

The CRT Status request message is formatted as shown here:

+ 00 ! STATUS_CODE_X '
[] []
+02 ¢]
- REQUESTER'S TASK ID -1
+ 04 ! !
' '
+ 06 ! CRT CYBER EQUIPMENT NUMBER !

ART2075S-94558 D980-119

4.7.1.2 CRT Status Request Response Format

The CRT Status Response message is formatted as shown here:

+00 ! STATUS_CODE_X '
[]

+ 02 g UNIT STATUS FLAGS ;
1

+ 04 ; CRT CYBER EQUIPMENT NUMBER ;
[] []

+ 06 ; CHARACTER 4 VIDEO ;
[]]

+ 06 ; X ! Y ;

Where: UNIT STATUS FLAGS

Bit 00 —- CRT Controller Not Busy Flag.
Bit 01 -~ CRT Controller Ready.

Bit 02 -- Protected Mode Selected.

Bit 03 —-- Scroll Up Mode Selected.

Bit 04 —- Scroll Down Mode Selected.

Bit 05 —- Insert Line Mode Selected.

Bit 06 —- Insert Page Mode Selected.

Bit 07 —- Keyboard/Function Keys Enabled.
Bit 08 —- Lite Pen I/0 Enabled.

Bit 09 -- Console Alarm Output Contact Set.

CHARACTER is character located at cursor position.

VIDEO is currently selected video display characteristics.

Bits 5-3 ----- Color Code.

Bit 2 ----- Inverse Video Mode Enabled.
Bit 1 - Protected/Tabbed.

Bit 0 -——--- Blink Mode Enabled.

X,Y are co-ordinates for the screen position where the-

cursor is located.

ART20758-94558 D980-120

4.7.2 CRT ﬁunction Request/Response Formats

4,7.2.1 CRT Function Request Format

The CRT Function Request is formatted as shown here:

WHERE :

ART2075S-94558

00

02

04

06

08

0A

FUNCTION_CODE_X

REQUESTER'S TASK ID

CRT CYBER EQUIPMENT NUMBER

REQUEST PROCESSING FLAGS

B B LB @ B 1O O e @ e '

X

P B I® W@ TG 1S @ @ ® e 'S

H Y

X,Y are the co-ordinates for the screen position where

the requester wants to cursor moved.

REQUEST PROCESSING FLAGS are defined as follows.

Bit 15 -- Not Used.

Bit 14 —- Not Used.

Bit 13 —- Clear Selected Modes.

Bit 12 -- Select Insert Character/Page Mode.
Bit 11 —- Select Insert Character/Line Mode.
Bit 10 -- Select Scroll Down Mode.

Bit 09 —- Select Scroll Up Mode.

Bit 08 —- Select Protected Mode.

Bit 07 -- Clear Alarm Output Contact.

Bit 06 —- SET Alarm Output Contact.

Bit 05 -~ Initiate Copy Operation.

Bit 04 -- Disable Lite Pen.

Bit 03 —- Enable Lite Pen.

Bit 02 —- Disable Keyboard/Function Keys.
Bit 01 -- Enable Keyboard/Function Keys.
Bit 00 -- Master Clear Controller.

D980-121

4.7.2.2 CRT Function Response Format

The CRT Function Response is formatted as shown here:

+ 00 ! FUNCTION_CODE_X !
!]
+02 FUNCTION COMPLETION FLAGS !
' '
+ 04 ! CRT CYBER EQUIPMENT NUMBER !

ART2075S-94558 D980-122

4.7.3 CRT Read Request/Response Formats

4.7.3.1 CRT Read Request Format

The CRT Read Request is formatted as shown here:

+ 00 ! READ_CODE_X '
H '
+ 02 ! '
- REQUESTER'S TASK ID -!
+ 04 ! !
! !
+ 06 ! CRT CYBER EQUIPMENT NUMBER !
[] [}
+ 08 ! REQUEST PROCESSING FLAGS !
[} []
+ 0A ! X ! Y '
! !
+ 0C ! DATA BUFFER CHAIN ADDRESS !
!~ OR A ZERO VALUE IF DRIVER -1
+ OE ! IS TO ALLOCATE DATA BUFFERS. !
[} []
+10 ¢ NUMBER OF CHARACTERS !
WHERE: X,Y are the co-ordinates for a screen position.

REQUEST PROCESSING FLAGS are defined as follows.
Bits 15-14 —- Not Defined.
Bits 13-12 —- Post Read Lite Pen Options.

00 = Enabled.

01 = Disabled.

10 = Pre-Read Status.

11 = Enabled.

Bits 11-10 -- Post Read Keyboard/Function Key
Options.

00 = Enabled.

01 = Disabled.

10 = Pre-Read Status.

11 = Enabled.

ART2075S-94558 D980-123

Bits 09-08 —- Post Read Cursor Options.

00 = Leave cursor where it is
located after read.

01 = Home cursor.

10 = Return cursor to shere it
was located before read.
11 = Leave cursor where it is

located after Read.

Bit 07 —— CRT's Selected Video Display
Characteristics Preservation flag.

Bit 06 ~- Data Character's Video Display
Characteristics Preservation flag.

Bit 05 —- Repeated Character String Compression
flag. Note, if repeated space
character string compression option is
selected, repeated non-inverse space
character strings will be processed

using that scheme.

Bit 04 ~- Repeated Space Character String
Compression flag. The X,Y coordinates
of next non-(non-inverse space)

character are saved rather than the

spaces.

Bit 03 —- Not Used.

Bit 02 -- Protect Mode Options.
0 = Don't change protect mode.
1 = Disable protect mode, read

data, and restore to original
protect enabled/disabled state.
Bits 01-00 -~ Pre-Read Cursor Options.
00 = Do nothing.

01 = Home cursor.

10 = Move cursor to specified
position.
11 = Move cursor to beginning
g““ . of current line.

ART2075S-94558 D980-124

Gmm 4.7.3.2 CRT Read Response Format

The CRT Read Request Response is formatted as shown here:

+ 00 ! READ_CODE_X !
[} []
+02 ! READ COMPLETION FLAGS !
[]]
+ 04 ¢ CRT CYBER EQUIPMENT NUMBER !
1]
+ 06 ! READ REQUEST DATA BUFFER !
‘- CHAIN ADDRESS -t
+ 08 !]

ART2075S-94558 - D980-125

4.7.4 CRT Write Request/Response Formats

4.7.4.1 CRT Write Request Format

The CRT Write request is formatted as shown here:

+ 00 ! WRITE_CODE_X !
! '
+ 02 ! '
- REQUESTER'S TASK ID ~!
+ 04 ! !
! '
+ 06 ! CRT CYBER EQUIPMENT NUMBER !
H !
+ 08 ! REQUEST PROCESSING FLAGS H
H !
+ OA ! X H Y !
' !
+ 0C ! '
!~ DATA BUFFER CHAIN ADDRESS -
+ OE ! !
Where: X,Y are the co-ordinates for a screen position.

REQUEST PROCESSING FLAGS are defined as follows.
Bits 15-14 -- Not Defined.
Bits 13-12 —- Post Write Lite Pen Options.

00 = Enabled.
01 = Disabled.
10 = Pre-Write Status.
11 = Enabled.
Bits 11-10 —- Post Write Keyboard/Function Key
Options.

00 = Enabled.
01 = Disabled.
10 = Pre-Write Status.
11 = Enabled.
Bits 09-08 -- Post Write Cursor Optioms.

00 = Leave cursor where it is

located after write.

01 = Home cursor.

ART20758-94558 D980-126

ART2075S-94558

Bit 07
Bit 06
Bit 05
Bit 04
Bit 03
Bit 02
Bits 01-00

10

11

Return cursor to where it was
located before write.
Leave cursor where it is

located after write.

—— CRT'S Selected Video Display

Characteristics Preservation flag.

—— Not used.

-- Release chain of data buffers after
write flag.

—- Pre-write clear screeﬁ/homé cursor

flag.

—-— Not used.

—- Protect
0 =
1 =

00
01
10

11

DS80-127

Mode Options.

L[]

Don't change protect mode.
Disable protect mode, write
data, and restore to original
protect enabled/disabled
state.

- Pre-Write Cursor Options.

Do nothing.

Home cursor.

Move cursor to specified
position.

Move cursor to beginning of

current line.

@W\

4.7.4.2 CRT Write Response Format

The CRT Write Response is formatted as shown here:

ART20758-94558

+ 00

+ 02

+ 04

+ 06

+ 08

B L@ @ W L Ve I ® e

WRITE_CODE_X

WRITE COMPLETION FLAGS

CRT CYBER EQUIPMENT NUMBER

WRITE REQUEST DATA BUFFERS
CHAIN ADDRESS (Zero
if buffers were released)

D980-128

4,7.5 CRT Multiple Field Read Request/Response Formats

4.7.3.1 CRT Multiple Field Read Request Format

The CRT Multiple Field Read Request is formatted as shown here:

+ 00 ¢ MREAD_CODE_X !
H !
+ 02 ! . !
- REQUESTER'S TASK ID -1
+ 04 ! !
H !
+ 06 ! CRT CYBER EQUIPMENT NUMBER !
H !
+ 08 ! REQUEST PROCESSING FLAGS H
[} [}
+ OA ! X ! Y '
! H
+ 0C ! DATA BUFFER CHAIN ADDRESS !
'~ OR A ZERO VALUE IF DRIVER -1
+ OE ! IS TO ALLOCATE DATA BUFFERS !
[] []
+10 ! NUMBER OF CHARACTERS !
[] [

+ 12 !¢ DATA FIELD DEFINITIONS H Defined

- DATA BUFFER CHAIN ADDRESS -1 a few
+ 14 ¢ H pages
forward.
WHERE: X,Y are the co-ordinates for a screen position.

REQUEST PROCESSING FLAGS are defined as follows.
Bits 15-14 -~ Not Defined.
Bits 13-12 —- Post Read Lite Pen Options.

00 = Enabled.

01 = Disabled.

10 = Pre-Read Status.

11 = Enabled.

Bits 11-10 -- Post Read Keyboard/Function Key
Options.

00 = Enabled.

01 = Disabled.

10 = Pre-Read Status.

11 = Enabled.

ART2075S-94558 D980-129

Bits 09-08 -- Post Read Cursor Options.

Bit 07
Bit 06
Bit 05
Bit 04
Bit 03
Bit 02

00

01
10

11

-- Not Use
-- Not Use
—— Not Use
-- Not Use
-- Not Use

d.
d.
d.
d.
d.

Leave cursor where it is
located after read.

Home cursor.

Return cursor to shere it was
located before read.

Leave cursor where it is

located after Read.

-- Protect Mode Options.

0 =
1=

Bits 01-00 -- Pre-Read

00
01
10

11

Don't change protect mode.
Disable protect mode, read
data, and restore to original
protect enabled/disabled
state.

Cursor Options.

Do nothing.

Home cursor.

Move cursor to specified
position.

Move cursor to beginning of

current line.

DATA FIELD DEFINITIONS DATA BUFFER CHAIN

This is a chain of Data buffers that the requesting task provides

to identify the CRT Screen Fields that that it wants to be read.

For each field, the task has to identify the starting screen
position for the field and the length of the field. This

information is packed into three byte packets that are formatted as

follows:

ART20755-94558S

D980-130

L ! X H X,Y are the screen
! ! co-ordinates for the
+ 01 ! Y ' start of the field.
' '
! FIELD LENGTH !

The Data Field Definitions data buffer chain contains one or more
Data Field Definition packets. The Data buffer control fields will

indicate how many Data Field Definition packets are contained in
the chain of Data buffers.

4.7.5.2 CRT Multiple Field Read Response Format

The CRT Multiple Field Read Response is formatted as shown here:

+00 ! MREAD_CODE_X !
' '
+02 ! READ COMPLETION FLAGS]
 J— '
+ 04 ! CRT CYBER EQUIPMENT NUMBER !
' '
+06 ! READ REQUEST DATA BUFFER '
- CHAIN ADDRESS -1
+ 08 ! '

ART2075S-94558 D980-131

APPENDIX A

DCI HARDWARE INTERFACE INFORMATION

ART20758-94558 D980-132

TALKING TO THE DCI CARD

Since the DCI card connects up to the Internal System Bus of the Device
Interface, there are four command bytes that can be output to the DCI and
there are four status bytes that can be input from the DCI card. These
command and status bytes are described on the following pages.

OUTPUTTING DCI COMMAND ZERO

A DCI COMMAND ZERO can be output by doing a byte write to the Memory Mapped
I/0 register whose address is defined as follows:

Bits 23-07 -- Base address for the Internal Control Bus Memory Mapped
I/0 registers.

Bits 06-03 —-- DCI's ISB slot number.

Bits 02-01 -- Internal Control Bus operation code (zero).

Bit 00 -~ Zero.

DCI COMMAND ZERO DEFINTION

Bit 7 —— Enable card.

Bit 6 -- Enable DCI's Internal Transfer Bus (ITB) interface.
Bit 5 -- Turn fault indicator off.

Bit 4 —- Turn attention indicator off.

Bit 3 —— Enable DCI's Internal Control Bus interrupt.

Bit 2 -- Disable diagnostic mode.

Bit 1 —- Disable NMI restart.

Bit 0 -- Disable maskable interrupt.

ART20758-94558 D980-133

OUTPUTTING DCI COMMAND ONE

A DCI COMMAND ONE can be output by doing a byte write to the Memory Mapped I/0
register whose address is defined as follows:

Bits 23-07 -- Base address for Internal Control Bus Memory Mapped I/0
registers.

Bits 06-03 -~ DCI's ISB Slot Number.

Bits 02-01 -- Internal Control Bus Operation Code (1).

Bit 00 -- Zero.

The DCI COMMAND ONE is used t& tell DCI to input either data or status
information from a specified 40-815 CRT Controller and store it in an internal
memory mapped I/0 register. The DCI COMMAND ONE byte identifies the 40-815
CRT Controller and the type of information wanted.

DCI COMMAND ONE DEFINITION

Bits 7-4 -—- 40-815 CRT Controller Number.
Bits 3-0 -- Input Operation Code.
Data Character Input.
40-815 CRT Controller Status Two/Data Character
Input.

-
(]

= 40-815 CRT Controller Status One Input.

= Undefined.

40-815 CRT Controller Status Two Input.

= Undefined.

= 40-815 CRT Controller Status Three Input (number
of last CRT function key pressed).

Undefined.

8 = 40-815 CRT Controller Status Four Input (CRT's
cursor position x co-ordinate).

9 = A40-815 CRT Controller Status Four/Status Five-

N U > W N
]

~
i

Input (CRT's cursor position x,y co-ordinates).
A = 40-815 CRT Controller Status Five Input (CRT's

cursor postion y co-ordinate).

ART2075S8-94558 D980-134

B = Undefined.

C = 40-815 CRT Controller Status Six Input (contents
of the 40-815 controller's data echo register).

D = Undefined.

E = 40-815 CRT Controller Status Seven Input
(Settings of the selectable switches).

F = Undefined.

When a DCI COMMAND ONE is output, the DCI goes busy until it has retrieved the
needed information from the 40-815 CRT Controller and saved it in its CRT
CONTROLLER INPUT register. After a DCI COMMAND ONE has been output, it is
necessary to wait until the DCI BUSY bit clears before attempting to input the
requested information from the CRT CONTROLLER INPUT Memory Mapped I/0 register.

The address of the DCI's CRT CONTROLLER INPUT Memory Mapped I/0 register is

defined as follows:

0OWeée 0XX

-

——- X = Any hexidecimal digit.

!
H {
H
!

— W = DCI's ISB Slot Number (4-8).

OUTPUTTING DCI COMMAND TWO

A DCI COMMAND TWO can be output by doing a byte write to the Memory Mapped I/0

register whose address is defined as follows:

Bits 23-07 -- Base address for Internal Control Bus Memory Mapped I/0
registers.

Bits 06-03 —— DCI's ISB Slot Number.

Bits 02-01 -- Internal Control Bus Operation Code (two).

Bit 00 —-— Zero.

The DCL COMMANMD TWO is used to tell the DCI which 68000 exception vector it is
to use to inform MPB of conditions that require its attention. This request

is normally just used once at system start up time.

ART2075S5-945558 D980-135

OUTPUTTING DCI COMMAND THREE

A DCI COMMAND THREE can be output by doing a byte write to the Memory Mapped
I/0 register whose address is defined as follows:

Bits 23-07 -- Base address for Internal Control Bus Memory Mapped 1/0
registers.

Bits 06-03 —- DCI's ISB slot number.

Bits 02-01 -- 1Internal Control Bus operation code (three).

Bit 00 —— Zero.

The DCI COMMAND THREE output request is used to tell the DCI to perform a

PROGRAMMED RESET operation for the 40-815 CRT Controller. The data output has
no significance.

INPUTTING DCI STATUS ZERO

DCI STATUS ZERO can be input by doing a byte read from the Memory Mapped I/0
register whose address is defined as follows:

Bits 23-07 -- Base address for Internal Control Bus Memory Mapped 1/0
registers.

Bits 06-03 -~ DCI's ISB Slot Number.

Bits 02-01 ——- Internal Control Bus operation code (zero).

Bit 00 —- Zero.

DCI STATUS ZERO DEFINITION

Bit 7 —_ DCI Card Okay.

Bit 6 - Device Available.

Bit 5 -- Attention Switch On.

Bit 4 - Bootstrap Operation Allowed (zero for DCI card).
Bit 3-0 —- Card Type Code (fourteen).

It should be possible to perform a DCI STATUS ZERO input at any time.

ART2075S-94558 D980-136

INPUTTING DCI STATUS ONE

DCI STATUS ONE can be input by doing a byte read from the Memory Mapped 1/0

register whose address is defined as follows:

Bits 23-07 —- Base address for Internal Control Bus Memory Mapped I/0
registers.

Bits 06-03 —— DCI's ISB Slot Number.

Bits 02-01 -- 1Internal Control Bus operation code (one).

Bit 00 —- Zero.

DCI STATUS ONE DEFINITION

Bit 7 —— DCI Busy flag.

Bit 6 —— I/0 Timeout.

Bit 5 —— 1I/0 Reject.

Bit 4 —— Attention Switch Set.
Bit 3 -- Interrupt.

Bit 2 —- -Undefined.

Bit 1 —- Parity Error - Upper.
Bit 0 —- Parity Error - Lower.

It is possible to perform a DCI STATUS ONE input at any time.

ART2075S-94558 D980-137

INPUTTING DCI STATUS TWO

DCI STATUS TWO can be input by doing a byte read from the Memory Mapped I/0
register whose address is defined as follows:

Bits 23-07 -- Base address for Internal Control Bus Memory Mapped I/0
registers.

Bits 06-03 —— DCI's ISB Slot Number.

Bits 02-01 -- 1Internal Control Bus operation code (two).

Bit 00 —- Zero.

DCI STATUS TWO is number of system interrupt vector that the DCI is using.
The number of the interrupt vector that the DCI uses is outbut to the DCI
during startup. A DCI COMMAND TWO output is used to perform this function.

INPUTTING DCI STATUS THREE

DCI STATUS THREE can be input by doing a byte read from the Memory Mapped I/0O
register whose address is defined as follows:

Bits 23-07 -- Base address for Internal Control Bus Memory Mapped I/O
registers.

Bits 06-03 —- DCI's ISB Slot Number.

Bits 02-01 -- Internal Control Bus operation code (three).

Bit 00 -- Zero.

DCI STATUS THREE is undefined.

ART20758-94558 D980-138

OUTPUTTING DATA TO CRT VIA DCI

An eight bit character can be output to a 40-815 CRT connected to a DCI by

writting it to the memory mapped I/0 register whose address is defined as
follows:

OWwe6o0YO

~=—— 40-~815 CRT Controller Number (0-15).

---------- DCI's ISB Slot Number (4-f).

Before such an operation is attempted however, DCI STATUS ONE should be input
and checked to ensure that the DCI isn't still busy processing a previous
operation.

OUTPUTTING CRT CONTROL ONE

A CONTROL ONE byte can be output to a 40-815 CRT Controller connected to a

DCI by doing a byte write to the Memory Mapped I/0 register whose address is
as follows:

o
©
- e | ¥
N

——= 40-815 CRT Controller Number (0-15).

- o w e | X

--------- DCI's ISB Slot Number.

ART2075S-94558 D980-139

CONTROL

Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit

ONE DEFINITION

-~ Unused.

-~ Select keyboard.

—~ Enable display function key interrupt.
-- Enable display copier interrupt.
Enable end-of-operation interrupt.

-—— Enable lite pen interrupt.

-- Unused.

O = N W s U0 O
|
|

-- Programmed Master Clear.

Before such an operation is attempted however, DCI STATUS ONE should be input

and checked to ensure that the DCI isn't still busy processing a previous

operation.

OUTPUTTING CRT CONTROL TWO

A CONTRO
by doing
follows:

‘- e e e | X

L ONE byte can be ocutput to a 40-815 CRT Controller connected to a DCI
a byte write to the Memory Mapped I/0 register whose address is as

o
o

oo | 4
&

-=—- 40-815 CRT Controller Number (0-15).

--------- DCI's ISB Slot Number.

The CONTROL TWO command is not defined.

ART20758-94558 D980-140

fﬁ“ OUTPUTTING CRT CONTROL THREE

A CONTROL ONE byte can be output to a 40-815 CRT Controller connected to a DCI

by doing a byte write to the memory mapped I/0 register whose address is as
follows:

-}
(=
o | g
[

——- 40-815 CRT Controller Number (0-15).

--------- DCI's ISB Slot Number.

CONTROL THREE DEFINITION

Bit 7 —- Enable alarm output.
Bit 6 —- Etart copier.

Bit 5 —- Not used.

Bit 4 —- Clear copier interrupt.
Bit 3 -- Not used.

Bit 2 —- Not used.

Bit 1 —- Enable lite pen 1/0.
Bit 0 -- Disable keyboard I/0.

Before such an operation is attempted however, DCI STATUS ONE should be input

and checked to ensure that the DCI isn't still busy processing a previous
operation.

ART2075S-94558 D980-141

OUTPUTTING CRT CONTROL FIVE (SET CURSOR X-ORDINATE)

A CONTROL ONE byte can be output to a 40-815 CRT Controller connected to a DCI

by doing a byte write to the memory mapped I/0 register whose address is as
follows:

OwWweoYs

——~ 40-815 CRT Controller Number (0-15).

@ w @ o

--------- DCI's ISB Slot Number.

Bits 6-0 of CONTROL FOUR byte give the X co-ordinate (columh number) for new
position of display's cursor. Bit 7 is not used.

Before such an operation is attempted however, DCI STATUS ONE should be input
and checked to ensure that the DCI isn't still busy processing a previous
operation.

OUTPUTTING CRT CONTROL FIVE (SET CURSOR Y-ORDINATE)

A CONTROL FIVE COMMAND can be output to a 40-815 CRT Controller connected to a

DCI by doing a byte write to the memory mapped I/0O register whose address is
as follows:

o
o
e] g
>

-== 40-815 CRT Controller Number (0-15).

- o oo | £

--------- DCI's ISB Slot Number.

Bits 5-0 of CONTROL FIVE byte give the Y co-ordinate (line number) for new
position of display's cursor. Bits 7-6 are not used.

Before such an operation is attempted however, DCI STATUS ONE should be input

and checked to ensure that the DCI isn't still busy processing a previous
operation.

ART2075S-9455sS D980-142

OUTPUTTING CRT CONTROL SIX (WRITE TO ECHO REGISTER)

A CONTROL SIX COMMAND can be output to a 40-815 CRT Controller connected to a
DCI by doing a byte write to the memory mapped I/0 register whose address is

as follows:

OWwWe 0YC

——— 40-815 CRT Controller Number (0-15).

_________ DCI's ISB Slot Number.

Control SIX bits don't have any meaning associated with them. The byte is
simply a data pattern which is stored in the 40-815 CRT Controller's echo
register. This data value can then input from the CRT Controller's echo
register and verified; a CRT CONTROLLER STATUS SIX input is used to read the
value from the CRT Controller's echo register. These two operations are used

to test the data input/output paths between the MPB and the 40-815 CRT

Controllers.

Before such operations are attempted however, DCI STATUS ONE should be input
and checked to ensure that the DCI isn't still busy processing a previous

operation.

OUTPUTTING CRT CONTROL SEVEN

A CONTROL SEVEN COMMAND can be output to a 40-815 CRT Controller connected to

a DCI by doing a byte write to the memory mapped I/0 register whose address is

as follows:

OwWe6O0Y

—=— 40-815 CRT Controller Number (0-15).

|
=

_________ DCI's ISB Slot Number.

CONTROL SEVEN is not currently defined.

ART2075S-94558 D980-143

INPUTTING DATA FROM CRT CONTROLLER USING DCI

The method used to input data from a 40-815 CRT controller is as follows:

a. A DCI COMMAND ONE is output to the DCI card to tell it to either retrieve

a data character or a data character and its associated video display

characteristics.
The DCI COMMAND ONE byte is formatted as shown here:

07 06 05 04 03 02 01 00

H CRT ! OPER H
Where: CRT -—- 40-815 CRT Controller Number.
OPER —- Input Operation Code.
0 = Data Character Input.

40-815 CRT Controller Status Two/Data

Character Input.

The DCI Driver alway uses an Input Operation Code of one to input a

character and its associated video display characteristics with a one

operation.

b. The DCI card goes busy until it has retrieved the requested information

from the CRT Controller and saved it in its CRT CONTROLLER INPUT register.

Therefore after the DCI COMMAND ONE is output, a program loop is entered
that inputs DCI STATUS ONE from the DCI card until the DCI BUSY bit

clears.

c. Once a DCI STATUS ONE has been input that indicates the DCI card is no
longer busy, this same DCI STATUS ONE byte is checked to ensure that no

errors occurs.

d. The requested data/video display characteristics information is input

from the CRT CONTROLLER INPUT Memory Mapped I/0 register.

ART2075S-94558 D980-144

The information come back formatted in the following fashion:

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Where: VIDEO FLAGS Video display characteristics associated with
the character input. See CRT STATUS TWO
definition which is located a couple of pages

forward.

This completes the inputting of a single character from a CRT. The DCI
card is designed to read the next character automatically so that the
next character can be obtained by going to step B. This eliminates the
overhead that is associated with step A when multiple characters are
being input, but it does mean that one extra character always get read
and that we must output a BACKSPACE control character after a read

operation if we want the cursor to be located after the last character

read.

INPUTTING CRT STATUS ONE

The method used to input CRT STATUS ONE is described in DCI COMMAND ONE output
section.

CRT STATUS ONE DEFINITION

Bit 7 -- Interrupt condition exists.

Bit 6 —— CRT's keyboad selected.

Bit 5 —— Function key has been depressed.
Bit 4 —- Copier operation done.

Bit 3 -- End-Of-Operation.

Bit 2 —— Lite pen has been used.

Bit L — WNot busy.

Bit 0 —- Ready.

ART2075S-94558 D980-145

INPUTTING CRT STATUS TWO

The method used to input CRT STATUS TWO is described in DCI COMMAND ONE output
section.

CRT STATUS TWO DEFINITION

Bit 7 -- Cursor located at end-of-screen.

Bit 6 - Cursor located at end-of-line.

Bit 5-3 -- Color of last character read.
000 —- Black (illegal).
001 -- Red.

010 -- Green.

011 —- Yellow.

100 -- Blue.

101 -- Magenta.

110 -- Cyan.

111 -- White.
Bit 2 - Inverse video display mode of last character read.
Bit 1 -~ Protected/Tabbed status of screen position of last

character read.

Bit 0 — Blink status of last character read.

INPUTTING CRT STATUS THREE (FUNCTION KEY NUMBER)

The method used to input CRT STATUS THREE is described in DCI COMMAND ONE
output section.

INPUTTING CRT STATUS FOUR (CURSOR POSITION X ORDINATE)

The method used to input CRT STATUS FOUR is described in DCI COMMAND ONE
output section.

ART20758-94558 D980-146

INPUITING CRT STATUS FIVE (CURSOR Y ORDINATE)

The method used to input CRT STATUS FIVE is described in DCI COMMAND ONE
output section.

INPUTTING CRT STATUS SIX (CONTENTS OF ECHO REGISTER)

The method used to input CRT STATUS SIX is described in DCI COMMAND ONE output
section.

INPUTTING CRT STATUS SEVEN (SWITCH SELECTABLE CONFIGURATION)

The method used to input CRT STATUS SEVEN is described in DCI COMMAND ONE
output section.

ART2075S-9455S D980-147

APPENDIX B

40-815 CRT CONTROLLER CONTROL CHARACTERS

ART20755-94558 . D980-148

80 -- NO OPERATION

The Display Controller terminates its current operation.

81 -- CLEAR SCREEN

The screen is cleared of all data, protected fields, tab marks and color
bits. The CURSOR is returned home.

82 —- CLEAR NON-PROTECT
When the CRT controller is in Protect mode, the screen is cleared of all data
not within a protected field. The cursor is returned to the HOME position or

to the first subsequent unprotected location. When the CRT controllwr isn't

in Protect mode, the entire screen is cleared and the cursor is homed.

83 —- CLEAR TO END OF FIELD/LINE

All characters are cleared from the cursor position to the first START PROTECT

FIELD character (Protect mode) or the end of line. The position of cursor
isn't changed.

84 —- CLEAR TO END OF FIELD/PAGE

All characters are cleared from the cursor position to the first START PROTECT
FIELD character (Protect mode) or the end of line. The position of cursor
isn't changed. '

85 -- DELETE CHARACTER IN FIELD/LINE

86 —- DELETE CHARACTER IN FIELD/PAGE

ART2075S-9455S : D980-149

87 —- DELETE LINE

The cursor moves to beginning of the line that it is located on and all
character on that line are cleared. All lines below the line containing cursor

move up one line position and the last line is left empty.

88 -~ INSERT LINE

The cursor moves to beginning of the line it is located on currently. Current

line and all lines below it shift down one line. The current line is
cleared. The original last line is lost.

89 —- CURSOR HOME

The cursor moves to first column of first line (HOME position). If CRT
controller is in Protect mode, cursor moves to either the HOME position or the
first subsequent unprotected position.

8A -~ CURSOR UP AND RIGHT

The cursor moves up one line and to the right one character position. 1In
Protect mode, cursor moves to first unprotected character by successively
moving up and right until an unprotected location is found. If cursor is on
the top line, it moves to the last line. If cursor is in the last column of a
line, it moves to first column of line above.

8B -- CURSOR RIGHT

The cursor moves right one character position. 1In Protect mode, the cursor
moves to first unprotected character position to the right. If the cursor is

positioned at the end of a line, it moves to first position of next line.

ART2075S8-94558 D980-150

8C -~ CURSOR LEFT

The cursor moves left one character position. In Protect mode, the cursor
moves to first unprotected character position to the left. If the cursor is

positioned at start of a line, it moves to last position of line above.

8D -- CURSOR UP

The cursor moves up a line position. 1In Protect mode, the cursor moves up to
first unprotected character position. If positioned on first line, cursor
moves to the last line.

8E -- CURSOR DOWN

The cursor moves down a line position. 1In Protect mode, the cursor moves down

to first unprotected character position. If positioned on last line, cursor
moves to the first line.

8F -- LINE SKIP

The cursor moves to first column of next line down. In Protect mode, cursor

moves to first unprotected position of next line or lines down.

90 —- CURSOR UP AND LEFT

The cursor moves up one line and to the left one character position. 1In
Protect mode, cursor moves to first unprotected character by successively
moving up and left until an unprotect location is found. 1If cursor is on top
line, it moves to last last line. If cursor is in first column of a line, it

moves to last column of the line above.

ART2075S-94558 D980-151

91 -~ TAB FORWARD

The cursor moves right to first character position containing a tab mark. 1In
Protect mode, the cursor moves right to first unprotected character position
after the next protected field. If no tab mark or protected field is

encountered, cursor moves to last screen character position.

92 -- TAB REVERSE

The cursor moves left to first character position containing a tab mark. In
Protect mode, the cursor moves left to first unprotected character position
after the last protected field. If no tab mark or protected field is

encountered, cursor moves to the HOME position.

93 -- TAB SET

fw? A tab mark is stored in CRT SCREEN IMAGE memory at position of cursor. WMo

symbol is displayed and the cursor position is not affected. This character is
not allowed when CRT controller is in Protect mode.

94 -- TAB CLEAR

A tab mark, stored in memory at position of cursor, will be cleared. No
symbol is displayed and cursor position isn't affected. This character isn't
allowed when CRT controller is in Protect mode.

95 —- CURSOR DOWN AND LEFT

The cursor moves down one line and to the left one character position. 1In
Protect mode, the cursor is moved to first unprotected character by

successively moving down and left until an unprotect location is found. -If

cursor is on last line, it moves to top line. If cursor is in first column of
a line, it moves to last column of line below.

ART2075S8-94558 D980-152

.

96 —- CURSOR DOWN AND RIGHT

The cursor moves down one line and to the right one character position. 1In
Protect mode, cursor moves to the first unprotected character by successively
moving down and right until an unprotected location is found. If cursor is on
last line, it moves to top line. If cursor is in last column of a line, it

moves to first column of line below.

97 —- START PROTECTED FIELD
A Start Protect Field symbol is displayed at cursor position. In Protect

mode, the protect bit is set for all character positions from the orginal

cursor position to either the end of page or the next End Protect Field symbol.

98 —- END PROTECTED FIELD

An End Protect Field symbol is displayed at cursor position. In Protect mode,
protect bit is cleared from one position to the right of the orginal cursor

position to either the end of page or the next Start Protect Field symbol.

99 -- ENABLE PROTECT MODE (CPU ONLY)

The Protect mode feature is enabled. All character positions having a protect
bit or tab bit set will be interpreted as protected data. The CURSOR is moved
right to the first unprotected character position if it is residing within a
protected data field. A read while the protected mode feature is enabled

results in only unprotected data being read.

9A —-- READ MEMORY

9B —- WRLTE MEMORY

ART2075S-94558S D980-153

9C -- SCROLL—UP.

9D —- SCROLL-DOWN

SE -- INSERT CHARACTER IN LINE
9F -- INSERT CHARACTER IN PAGE
A0 —- CLEAR INVERSE VIDEO MODE

The inverse video feature is disabled and characters subsequently written are
displayed in normal video mode.

Al -- WRITE GREEN

All displayable data characters subsequently output to CRT Controller are
displayed in green.

A2 — WRITE BLUE

All displayable data characters subsequently output to CRT Controller are
displayed in blue.

A3 -- WRITE CYAN

All displayable data characters subsequently output to CRT Controller are
displayed in cyan.

ART2075S8-94558 D980-154

A4 —- WRITE RED

All displayable data characters subsequently output to CRT Controller are
displayed in red.

AS —- WRITE YELLOW

All displayable data characters subsequently output to CRT Controller are
displayed in yellow.

A6 -~ WRITE MAGENTA

All displayable data characters subsequently output to CRT Controller are
displayed in magenta.

A7 -- WRITE WHITE

All displayable data characters subsequently output to CRT Controller are
displayed in white.

A8 -~ SET INVERSE VIDEO

The inverse video feature is enabled and characters subsequently written are

displayed in inverse video mode.

A9 ~- BLINK OFF N N

All characters subsequently output to CRT Controller are displayed in
non-blinking video.

AA —- INSERT CHARACTER IN FIELD/LINE

ART20758-9455S D980-155

AB —- INSERT CHARACTER IN FIELD/PAGE

The Display is set to insert character in page mode. The insert character in
page feature is disabled upon receipt of a second "AB" code.

AC -- BLINK ON

All characters subsequently output to CRT Controller are displayed in blinking
video.

AD -- ENABLE SCROLL-UP MODE

The Display is set to Scroll-Up Mode. Not allowed in Protect Mode.

AE -- ENABLE SCROLL-DOWN MODE

The Display is set to Scroll-Down Mode. Not allowed in Protect Mode.

AF —- CLEAR MODE CONTROL

The Display Controller is cleared from Protect, Scroll-Up, Scroll-Down, and
Insert Modes.

ART2075S-94558 D980-156

REVISION RECORD

REVISION DESCRIPTION

0 ARTECS ADVANCED APPLICATIONS Design Specification #D980 -- Display
7/25/85 Controller Interface

ART20758-94558 D980-157

